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FLUID OSCILLATIONS IN THE CONTAINERS OF A SPACE VEHICLE AND THEIR
INFLUENCE UPON STABILITY

By

Helmut F. Bauer

SUMMARY

With the increasing size of space vehicles and their larger tank diameters, which
lower the natural frequencies of the propellants, the effects of propellant sloshing upon
the stability of the vehicle are becoming more critical. Especially since at launch, usu-
ally more than ninety per cent of the total mass is in the form of liquid propellant. With
increasing diameter, the oscillating propellant masses and the corresponding forces in-
crease. Furthermore, the Eigen frequencies of the propellant become smaller and shift
closer to the control frequency of the space vehicle. To obtain smaller sloshing masses
and higher Eigen frequencies, the cylindrical containers can be divided by radial or cir-
cular walls. Another possibility is the clustering of tanks with smaller diameters, which
has the disadvantage of a weight penalty. For stability investigations the influence of the
oscillating propellant must be determined. For this reason, forces and moments of the
propellant with a free surface performing forced oscillations in a container must be
known. To obtain the Eigen frequencies and mode shapes of the liquid, forced oscillations
of a frictionless fluid in a cylindrical container of circular ring sector cross section are
treated. The assumption of frictionless liquid is justified, since only very small damping
is provided by the friction at the tank walls. In a cylindrical container, the lower part
of the liquid performs the forced oscillation like a rigid body and only the liquid in the
immediate vicinity of the free surface moves independently. With increasing mode
number, this motion penetrates less deeply into the liquid. The oscillating propellant
can be represented as a spring-mass-system, in which location and magnitude of the
model values are determined to give the same forces and moments as the liquid. In this
mechanical model, linear damping can be introduced. The magnitude of this damping,
which is provided by wall friction and possibly additional baffles, is obtained by experi-
ments.

After the introduction of the mechanical model for the propellants, the derivation
of the equations of motion presents no problem. The influence of propellant sloshing is
then determined by stability boundaries. To minimize this influence, various methods
can be used: First, subdivision of propellant containers of which the oscillating liquid



masses are decreased and distributed to different modes and the Eigen frequencies are
increased; second, proper location of the propellant containers; third, appropriate
choice of the control system, such as gain values and additional control elements; and
fourth, the introduction of additional baffles into the propellant, to disturb the flow field
and create larger damping.

This paper gives the results of theoretical studies for the response of the liquid
in an arbitrary cylindrical ringsector container, derives the model for the most fre-
quent tank forms and presents stability boundaries for various control systems.

SECTION I. INTRODUCTION

The present trend in modern space technology toward large vehicles presents
numerous new problems not encountered in the development of smaller missiles. For
example, propellant sloshing may be established by the motion of a space vehicle. Such
propellant oscillations are of importance for there is a possibility of extreme amplitudes
if the excitation frequency is in the neighborhood of one of the natural frequencies of the
fuel.

Since more than 90 per cent of the total weight at take-off is liquid propellant, the
influence of propellant sloshing upon the stability of the vehicle becomes more critical,
especially with increasing tank diameter, because the oscillating propellant masses and
propellant forces increase very rapidly. Furthermore, the Eigen frequencies of the pro-
pellant decrease with increasing propellant tank diameter and are getting closer to the
control frequency of the space vehicle. For this reason,there will be a continuoffs ex-
citation of propellant and the influence of propellant sloshing upon stability has to be in-
vestigated.

To Obtainsmaller sloshing masses, one can subdivide the cylindrical tanks by either
radial or circular walls. Another possibility is the clustering of tanks of smaller diameter.
This, however, has structural and weight disadvantages. If 0,_pace vehicle, .dueto an
atmospheric disturbance, deviates from its original trajectory, it should be quickly re-
turned to its preprogrammed flight path. This is performed by the control and guidance
system and is executed by swiveling the thrust of the space vehicle. A poorly designed
control system can therefore continuously excite the motion of the propeJlant in the,tanks.
For this reason, force and moments of the liquid in performing harmonic oscillations in
a cylindrical container must be determined and their influence upon the _stability must be
investigated. The exact solution of this problem is too complicated. To Obtain the values
of the Eigen frequencies, the mode shapes, and the sloshing masses of the vibration
modes, the liquid vibration is treated for free and forced oscillations of a frictionless
fluid in a circular cylindrical ring sector tank. The assumption of a frictionless liquid is

justified since the damping due to friction at the tank walls is usually of very small mag-
nitude.



In a cylindrical container the largest part of the liquid performs the forced motion,
like a rigid body. Only the liquid in the immediate vicinity of the free fluid surface os-
cillates by itself. This motion penetrates approximately one radius into the liquid surface
for the lowest Eigen frequencies. For higher Eigen frequencies, the penetration becomes
smaller.

For stability investigations of space vehicles, the motion perpendicular to the
trajectory is of main importance. For this reason we will restrict our investigation to
these motions. Free and forced vibrations in the form of translatory, rotati0nalor roll ex-
citation of the container will be treated. In these motions the boundary conditions will be
linearized. This has, besides the simplification for the solution, the advantage that so-
lutions of different excitations can be superimposed_. The fact that the liquid is consid-
ered irrotational results in the representation of the v6iocity vector of a fluid particle
as a gradient of a velocity potential. Since the fluid is incompressible, the velocity po-
tential must be a solution of the Laplace equation which does not explicitly contain the
time. This means that the flow in the container is determined at any instant by the
boundary conditions at that time.

The oscillating liquid can be represented as a spring-mass system for which the
magnitude and location of the oscillating liquid masses and corresponding spring con-
stants must be determined. They must have the same Eigen frequencies and exert the
same forces and moments as the actual fluid.

At the Eigen frequencies of the propellant, the solutions of the potential theory
exhibit singularities. The oscillation of the propellant, however, is damped by wall and
internal friction indicating that an investigation of damped fluid vibration would be neces-
sary. Especially in the region of resonance where fluid forces occur which are a multi-
ple of the inertial force, an exact knowledge of these values is important. The analytical
treatment of damped fluid oscillations, especially in containers with stiffener rings and
baffles, presents insurmountable difficulties. The mechanical model therefore serves for
the introduction of linear damping. The magnitude of the damping is determined by ex-
periments.

After the introduction of the mechanical model, the derivation of the equations of
motion of the space vehicle represents no further difficulty. The elastic behavior of the
space vehicle can also be included in the analysis. With increasing length of the vehicles,
these elastic effects play a more important role. Finally, the influence of the propellant
oscillations upon the stability of the space vehicle is investigated. The questions of how
to design a control system and where one should place an additional control accelero-
meter to minimize baffle requirements and to enhance the stability of the vehicle with
respect to propellant sloshing are answered. The influence of tank geometry, the lo-
cation of a propellant container as well as the gain values, and the vibrational character-
istics of a control accelerometer upon the stability boundaries are investigated. This is
performed by varying the different parameters and by determining the stability bour_daries
with the usual criteria of Hurwitz.



The problem of free fluid oscillations in a circular cylindrical container was
treated in i829 by Poisson. Because the theory of Bessel functions was at that time un-
available, the result was not completely interpreted [ i]. In the year i876, Rayleigh
[ 2] gave the solution for free fluid oscillations in rectangular and cylindrical tanks of
circular cross'section. In recent years, the problem of forced fluid oscillations has
grown in importance [ 3]. Graham and Rodrigue [4] determined the forced vibration of
liquid in rectangular containers while Lorell [ 5] gave the flow of a fluid in a two-dimen-
sional rectangular container and cylindrical tank of circular cross section for transla-
tional excitation. At almost the same time, reports about forced fluid oscillations in
cylindrical tanks [6, 7, 8, 9] began to appear at various companies in the United States.
Fluid oscillations in a cylindrical tank with annular [ i0] and elliptic [ i l] cross section

have also been treated. Budiansky [ 12] used integral equation techniques to determine

fluid oscillations in horizontal, circular cylindrical, and spherical containers. The first

Eigen frequency can also be obtained by an approximation method [ i3] if one considers

the liquid of small fluid heights as a compound pendulum. For large liquid heights, the

Eigen frequency can be approximated by substituting the liquid body by an equivalent cir-

cular cylindrical liquid mass of equal volume and equal free fluid surface area.

All circular cylindrical containers can be obtained from the results of the fluid

oscillations in circular cylindrical ring sector tanks. The mechanical:model is pre-

sented only for the most important practical container geometries such as circular

containers and four quarter containers.

SECTION II. OSCILLATION OF A FRICTIONLESS LIQUID IN CY-

LINDRICAL CONTAINERS

An exact solution of the problem of fluid oscillations with _ free fluid surface in a

container is practically impossible. Since at first we are interested only in the mechanical

values of the system, namely, the Eigen frequencies of the liquid and the sloshing masses,

we assume for simplification that the flow field can be considered frictionless, irrota-

tional, and incompressible. With the results of this'theory, a mechanical model can be

derived in which damping can be included. Since the cylindrical propellant containers

will be divided by radial or concentric walls to decrease the oscillating propellant masses_

we will discuss the fluid oscillations in a cylindrical container with circular annular sec-

tor cross section (Fig. I). From the results of this analysis, we can obtain by limit

considerations the solutions for container forms which are most important in practice,

A. THE BASIC EQUATIONS

Because of the assumption of irrotational flow, the velocity v can be repre§ented

as a gradient of the velocity potential _. For an incompressible medium, 4_ must be a

solution of the Laplace equation [ i4].

Ae = o (I)

4



The introduction of the potential (I,has the advantage that all interesting values
such as velocity and pressure can be obtained with on___eesingle function. The velocity dis-
tribution is derived by differentiation with respect to the spatial coordinates, and the
pressure p follows from the unstationary Bernoulli equation

+! v2 + P + gz=0. (2)
_t 2 p

Here g is the longitudinal acceleration of the container.

boundary conditions of the problem have to be derived.

locities of liquid and wall are equal.

dT a

_-= (_-t + v . grad) T=0, (3)

In addition,-there is the boundary condition at the free fluid surface. If the equation of

such a surface at which the pressure p = 0 is described by

z =z (x,y,t),

then it is for liquid particles at the surface

T-- z - _ (x,y,t) = 0. (4)

With equation 3 this results in the linearized form _÷ - and represents the kine-

matic condition. From the linearized Bernoulli equation 2_,Zwe obtain with the pressure

p = 0 at the free fluid surface,

Z --
g ' (5)

from which, by elimination of z, we finally obtain

_2_ _

7 + g Oz - 0 (6)

for the free surface condition. Besides simplification in the treatment for the solution,

linearization of the problem has the advantage that various cases can be superimposed.

For the free oscillations of incompressible, frictionless and irrotational liquid

in a fixed container with a free fluid surface, we obtain the equations

To solve equation i, the

At the tank walls the normal ve-

5



A,I, = 0

0___= 0 at the container wails. (7)
On

t2 + g 0z - 0
at the free fluid surface.

If the container performs forced oscillations, then the basic equations can also be rep-
resented in simple form. In this case, the boundary conditions at the tank walls must
also be linearized. The solution of the Laplace equation is built by the potential of the
motion of the container without a free fluid surface (which is assumed to be small) and
the disturbance potential _bwhich is caused by the disturbance of the free fluid surface.

(x, y, z, t) i:= ¢o (x, y, z, t) + q5 (x, y, z, t). (8)

Both functions _bo and _b satisfy the Laplace equation. The normal derivative of

the velocity potential • must be equal to the normal velocity of the container wall. From

this we conclude that the normal derivative of the disturbance potential must be equal to

zero at the container walls.

The equations for the solution of forced oscillations are therefore

A,:I, _ 0

0__.__4_= Normal velocity of container wall.
On

a2o oo - o
0t 2 + g 0z

at free fluid surface.

(9)

B. FREE OSCILLATIONS

We start with the free oscillations to find the Eigen solutions needed for the

series expansion of the solution of the forced oscillations. The flow field of the fluid of

a liquid with free fluid surface in a cylindrical container of circular annular sector cross

section and With a vertex angle 27r c_ and a flat tank bottom is obtained from the solution

of the Laplace equation A_b = 0 with the linearized boundary conditions.

6



= 0
Oz

at the bottom of the container z = -h

= 0 at the circular cylindrical tank walls r = a, b (10)Or

r 3(p
0 at the sector walls q_ = 0, 2_

O__ O_ = 0 at the free fluid surface z =0
Ot2 + g Oz

With the assumption of the product solution of the form

q_ (r,_,z) =R (r) G (W) Z (z),

the solution can be found to be

ic0t
_b= e {C1cos,_+C2sin,_} [ {C3coshhz+C 4sinhhz} {C5J , (hr) +C_Y,(Xr) }+ {C7z+C8}
{C9r'+C10 r -_} ]• (11)

The velocity potential which satisfies the boundary conditions at the container walls is

q_(r,q_ z,t): E_ A ei°_mntcos (m q_) mn a + _ ), r (12)mn _ Cm mn_ •

oh[ m 
Here the abbreviations are

m - C(p)= Jm (P) Ym (_mn) - Jm (_mn)Ym (P)
2_ 2_ 2_ 2_ 2_

The values _ nan are the positive roots of the equation

(13)

A :J' (})y' (k}) - J' (k_) Y' (4) :0, (14)
m m m m m
2e_ 2o_ 2ff 2o_ 2_

in which k : b/a is the diameter ratio of the inner and outer tank wall. The unknown

constants Amn can be obtained from the initial conditions. The equation for the Eigen

7



values of the liquid is obtained from the free surface condition 10.

h) m,n=O, 1, 2.. (15)°_2 -°_2 = g _mntanh (_mn a "mn a

It can be seea that the Eigen frequencies of the liquid increase with the square

root of the longitudinal acceleration and that they decrease with increasing tank diameter.

For large container diameters, the Eigen frequencies are small. This is of great dis-

advantage in designing a space vehicle control system. It indicates that, with increasing

tank diameter, the Eigen frequencies of the propellant are dangerously close to the con-

tr01 frequency which usually exhibits small values in the order of 0.2 to 0.5 cycles/sec.

A possibility for the increase of the Eigen frequencies exists in the change of the con-

tainer geometry. This is expressed by the value _mn"

For large values of the liquid height h/a, the square of the Eigen value o_2 _ g_mn

is practically independent of the fluid height; and expresses that the ratio w_ a
changes its value only for small fluid heights h/a < i. For higher mode sha_es, this

value stays constant_/ to very small values of h/a then decreases rapidly to-
ward zero. (Fig. 2) v _mn

C. FORCED OSCILLATIONS

For a stability investigation of the total space vehicle, fluid forces and moments

due to oscillations of the vehicle about its trajectory, that is, translational motion per-

pendicular to the flight trajectory or rotational about the longitudinal and latitudinal axis_

have to be known. We therefore investigate the case that the propellant container per-

forms forced oscillations. Since the liquid follows the motion of the tank wall in the

lower part of the container like a rigid body and since in the vicinity of the surface the

fluid performs independent oscillations, it makes sense to split the potential 4_ into the

potential of the rigid body motion Go (liquid without free fluid surface) and a disturbance

potential _ which is caused by the free surface motion.

i. Translational Motion of the Container. We start with the special case that

the excitation is parallel to the container wall. For this case the boundary conditions are

D_ i_t
Dr - i_xoe cos_ at the circular cylindrical tank walls r = _, b.

O_
-0

Dz
at the bottom of the container z = -h

I D_

r Dq_ -0 at the sector wall _ =0 (16)

1 D_
- -i_2xoei_2tsin2_ at the sector wall q_ = 2_

r D_

8



and D2_ O_

3t 2 + g Dz - 0 at the free fluid surface z=0

By extracting the container motion

4_ = ( _b + i_2XorCOS _ }e it2t' (17)

one obtains the boundary conditions for the disturbance potential which are homo-
genous at the container walls.

3__ =0 for r=a,b
Dr

3_
--_ = 0 for z =-h
Oz

i
r Dq_ = 0 for _ =t),2_c_

g _az - _22_b--it23XorC°s_ for z = 0

For this reason the disturbance potential _b (r, q_, z) which satisfies the Laplace equation

has the same form as 12. Omitting the double summation and indices for a more

lucid presentation, and introducing the abbreviations

h
m z r and K=_mn a '= _' _ = _mna' O = _mn a

the disturbance potential is

¢ (r,(p,z) =Acos_C(p) cosh(K+_)
cosh g (18)

To determine from the condition of the free fluid surface the still unknown coefficients

Amn, the right hand side of this boundary condition has to be expanded into a series where
cos q_ is represented as theFourier series

- sin c_ 2_(-1) m+l -cos e = a cos_ with a o- a - sino_ (_ =2_) (19)m (_ ! m
m=O (rn2 _2 _ _ 2)

The function r is represented as a Bessel series

DO

r= _ b C(p)
mn

n=O (20)



where

b

mn

af _mn
k_m n p2C(p)dp

F_mnnc 2
mno _v (p) dp

k _mn

2a N 2 (_ )
mn

f_2n -k2C2(k_mn) 1 - m22 C2  mn']4_ _mn n
(21)

The coefficients Amn become

i_2a b x _2
m in o

Amn - (1-772 )

_2
where _? =-- is the ratio of the exciting frequency to the Eigen frequency. The ve-

co
locity potential 4) for translational container excitation in x - direction is then

f a b C(p)_2cosh(K+_) }
i_2t m mn cos_

4) (r, _, z, t) = it2Xoe rcos(p + ( i-_? 2 ) cosh K
(22)

The first term (potential of the rigid body) satisfies the boundary conditions at the tank

walls while the second part ( disturbance potential) vanishes at the tank walls. The free

surface condition is satisfied by both parts of the formula. The free surface displace-

ment, the pressure-and velocity-distribution, as well as the forces and moments of the

liquid, can be determined from the potential by differentiations and integrations with

respect to the time-and spatial coordinates.

The surface displacement of the propellant which is measured from the undis-

turbed position of the liquid is

f

_ _2 i_2t [

z - Xoe % rcos_ +
g

The pressure in a depth (-z) is

04_-gpz = p_22Xo ei_2t _rcosq_+

a b C (p)_?2 ")

m mn cos_ ! (23)(t-V 2)

ambmnr/2cosh(K+ _ ) C(p) cos_" 1

( i-r/2 ) cosh K J
pgz . (24)

At the outer container wall r = a, the function C (p) = 2/Tr_mn,while at the inner con-

tainer wall, r = b, the function C (p) has a value C (k_mn). At the sector walls _ = 0,

= -_, the cosine assumes the value i, respectively (-i) m. The pressure distribution

at the tank bottom is obtained from 24 withz =-h (_ =-K).
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By integration of the appropriate components of the pressure distributions, the
liquid forces and moments can be obtained. The resulting force in x-direction is there-
fore

0 a 0

F : f f (aPa-bPb) COs_d_dz-f f p_:_ sin_drdz. (25)
x o -h b -h

Here the first integral represents a contribution of the pressure distribution at the cir-

cular container walls, and the second integral stems from the pressure distribution at

the sector walls. With the mass of the liquid m = p 7r a2ha (1-k 2) the fluid force becomes

a b sin_2tanhK

F =m_2x e +2 m mn No(_mn )
x o _a(i-k 2) (i-_7 2) K

-kC ( k_ mn
7r_ mn "

+
( v2m2 ,_2)

The force components in y-direction is governed by

0 a 0

Fy= f f (aPa-bPb ) sinq_dq_dz + f f
0 -h b -h

pq_=_ cos_drdz.-

and results in

F =-2m_2x e i_t
y o

ambmnr/2 [ i-(-i) mcos_] tanhK

-an (i-k 2) (i-_ 2) K

+

a 0

f fp =o
b-h

Here (see Table i)

N O( }mn )

N O(}mn )

I 2 -kC(k_mn)l } "7r_mn

The first term,

i_t,
m_ 2 Xoe

C (p) dp.
i f _mn

J

mn k_mn

drdz

(26)

(27)

(28)

(29)

li



in 26 represents the inertial force of the propellant that is the force of the solidified
liquid. The fluid moments M and M with respect to the point (0, 0, -h/2) are given by

y x
0 _ a

h
M = f f (aPa-bP b) (_ +z) coscpdgodz+ f f Pcr2oosq_dq)dr

Y 0 -h 0 b

a 0
h

f f +z)
b-h

drdz
(30)

and

o _ a
h

Mx=- f f (aPa-bPb)(2 +z)sin_od_odz - f f P cr2Singod_odr
0 -h 0 b

a 0 h a 0 h +z) p _cosF_drdz. (31)
+ f f(_ +z) P =odrdz - f f(_ _=a

b -h -" b -h

M_ is the moment about an axis passing through point (0, 0, -h/2) parallel to the y-axis

w_ile M x is the moment about an axis parallel to the x-axis through the same point. In
these formulas, the first integral again represents the contribution of the pressure dis-

tribution at the circular cylindrical tank walls. The second integral is the contribution

of the bottom pressure while the remaining integrals represent the pressure contribu-

tion at the sector walls to the moment. After the integration has been performed, the

moments of the liquid are

[ (1 _c _) ambmn_? { It

2 i_t i+k 2 sin os sin_ ( -i ) m+l 2

M =mt2 aXoe 4--_a + -- - + . anh_ +
Y _ c_ (i-_72) (l-k2) _m n

)iE tI2 _c i _2 2 kC (k}m n +oshl¢ i 0 ( _ mn ) + ( 7r2m 2 __2) _ mn ( 7r2m2 -_2)Kc°shK

+ 2mga (1-k 3) sin_ (32)
3 ( i-k 2)

12



M = -m_22axoeigtt
X (l+k 2) sin2_ I ambmn [ i-(-I) mcos_ ]_72 {i t- 2

- . anh K + - •
4h/a _ _ ( i-_? 2) ( i-k2)_mn(X

- f nt 1 252_2nN2 (_ mn)'_
5z2 2 -kC (k_m + (_--_m 2 ---_-)_c--'_shK_JNo (_mn) + (_2m2 -_T2) _mn

_ 2mga (i-k 3) (i-cos_) . (33)

3 ( t-k 2) c_

Since the reference axis does not pass through the center of gravity of the undisturbed

liquid, the last term in the moment fdrmula represents the static moment of the liquid.

The velocity distribution is in radial direction

O4_ i_t Ic ambmn_?2 _ mnCOSh (K+_)u - - -i_2x e osq_ +
r 0Y o ( i-_? 2 ) a cosh K C'(p) cos ] (34a)

in angular direction

l a4_ i_t Is ambmn_2(m/2a) cosh(K+_)
u - - -i_2x e inq_ +

q_ r aq_ o C (p) sin_
r(i-V 2) a cosh K

(34b)

and in axial direction

04_ i_2t ambmn_?2_ mn sinh(g+_ )
- C(p) cos_. (34c)

w 0z - i_Xoe a(i-_? 2) cosh g

In the equations for the pressure, forces, moments and velocity distribution of the

liquid, the term for the solidified liquid is represented as a single term and not as a

series. This results in a faster convergence of the results. The velocity distribution

in the container is obtained by omitting the first term in the braces, that is, omitting

the term cosq_ for the radial velocity component of u r and sine for the angular compon-

ent of u_. To know completely the response of the liquid to a translational motion the
excitation in y-direction also has to be treated. The procedure is only slightly different

from that of excitation of the translational excitation in x-direction and makes a compre-

hensive investigation unnecessary. The flow field of the liquid with respect to forced

oscillation of the container in y-direction is again obtained from the solution of the po-

tential equation i. The boundary conditions at the tank walls are, for this case

04_ i_t
- i_Yoe slnq_ at the tank walls r = a,b.Dr

=0 at the tank bottom z =-h
Oz

13



i DO i_t
r D_ - i_y°e

at the sector wall _ = 0

1 Da_ i_2t

r _q_ -_ i_2y°e cos_ at the sector wall _ = 2_

By transformation similar to the one previously used, the container motion can be elim-

inated. This is performed by substituting x o cosq_ of the previous transformation by Yo

sinq_. For the determination of the unknown coefficients, Amn, sinq_ has to be expanded

into a Fourier series

i-cos_ 2_[ (-1) mcos_-l]
sin q_ = _ CmCOSq_ with c - ,'c - __2 •o _ m (m2_ 2 ) (35)

m=0

The velocity potential finally is

4_ (r, q_, z, t) = i_2Yo ei_2t

L
Cmbmn_?2cosh ( K + _) tC(p) cos_ (36)

rsinq_ + (i-_2) coshK

The terms of the double summation vanish at the tank walls while the term

i_2YorSin_ei_2t satisfies the boundary conditions at the tank walls. Both satisfy the free
surface condition. The corresponding results are presented in Table i. The velocity

distribution for excitation in y-direction is obtained from 34 by substituting Yo for x o

and c m instead of a m in the double series. Furthermore, one has to substitute in the

velocity component u r the value cosq_ by sin_ and in uq_ the value sinq_ by -cos _.

2. Rotational Oscillations. Besides translational oscillations, a space

vehicle also performs rotational oscillations. Therefore, rotational excitation of the

containers about the origin of the coordinate system, which is now placed in the middle

between the tank bottom and the undisturbed fluid surface on the vertex axis of the tank,

must also be performed. If 0 o is the rotational amplitude about the y-axis and if Xo is

the amplitude about the x-axis, the boundary conditions are expressed by

DO -i_20oe zcosq_

Dr - -i_2)_oei_tz sinq_

f i_2t "1

DO i_20oe.,_rcosq_ |

Dz i_2)_o e rsinq_ j

at the tank walls r =a,b.

r De - -i_2 Xoei_2tz

h
at the tank bottom z = -

2

at the tank sector wall _ = 0

i4



iot }i_2eoe, zsin_

-i,Q Xo1_2tzcos_
at the tank sector wail q_ = 2_

h+* g = 0 at the free fluid surface z = +-
_t 2 0z 2

By elimination of the rigid body potential q_o with

= i_2rz - +

XoSin_

i_t
e

the boundary conditions at the tank side walls (r=a, b, and q_ = 0, 2_) can be made

homogeneous. The solution of the Laplace equation which satisfies these tank wall con-
ditions is

q_ = [ Acosh _+B sinh_ ]C(p)cos_ . (37)

Because of the moving tank bottom two hyperbolic functions appear. From the boundary

conditions for the tank bottom and the free fluid surface, one obtains with the series

expansions of cosq_, sinq_ and r

]{:}A = K K a

mn _mn (I-_/2) coshK 2 sinh (2)- (_ + 7) cosh (_) . (38a)
c

abmn _2 _ K l{am}Bmn ..... _mn(:_ 1-_? 2) cosh_ 7- 7 ) sinh (2) - 2 cosh (2) c m . (38b)

The abbreviation 7 = g_mn/a_22 equals the reciprocal of the frequency ratio _2 for

large liquid fillings. With this the velocity potential is

• (r,q_, z, t)=
-rzcos¢. }
-rzsm¢

+ (Acosh _ + Bsinh_)C(p)cos t.
(39)

The term in the front of the double series satisfies the boundary conditions at the con-

tainer side walls while the terms of the double series vanish there. The double series,

together with the terms in front of it, satisfies the boundary conditions at the tank bot-

tom and at the free liquid surface. The corresponding results are given in Table 1.

15



Here the forces contain, in the space-fixed coordinate system, the weight component
as the first term. The displacement z eof the free fluid surface in tank fixed coordi-
nates is obtained by subtracting from the displacement Z of the space-fixed system the
value due to container rotation

i_t

zz rco 0o}rsin_Xoe i_2t •

For design of the roll control system, the knowledge of the response of the liquid due to

roll excitation_ q_ = q_oei_2t, is important. The origin of the coordinate system is again

placed in the undisturbed free fluid surface. This results in a simpler representation

of that part of the solution which depends on z. The boundary conditions are

D_
- 0

Dr
at container walls r = a,b,

a_
-- = 0
Oz

at the tank bottom z = -h,

i O4)
i_r_o ei_t at the sector walls _ = o, _,

r Oq_

02_ O_
- 0 at the free fluid surface z = O.

Ot2 + g Oz

However, these boundary conditions cannot, as in the previous cases, be satisfied by

one potential but by two potentials,

gb1 =gbl(r,q_ ) , ¢ =q_(r,_,z}_.

iflt
(r,:q_, z, t) = [ q_o(r, g0) + ¢ (r,q_,z)]e

Both functions satisfy the Laplace equation. _o (r, q_) is determined such that it satis-

fies the boundary conditions at the tank side walls r = a,b and q_ = o,27ra. The. solution

represents nothing but the flow in an infinitely long tank. With the help of the distur-

bance potential q_ (r, q_, z), we take care of the boundary conditions at the tank bottom

and at the free surface. The boundary conditions for the functions q5o and q_ are given

by

o¢ o
-0 at the tankwalls r=a,b.

Or

o
- i_or2 at the sector walls q_ = o, 2_c_

16



and

at the tank walls r = a, b

at the sector walls _ = 0, 27r_

at the tank bottom z = -h

ag_z- _2¢ = _2_ °

From the equation A_O = 0,

at the free fluid surface z = 0.

one obtains the Poisson equation

Aq_ 1 = - 4i_Po (ga-va)

The boundary conditions are then

with q5o = i_2(Por2 (q_-Tre_) + q51.

= -2i_ _Vor(_-_)Or
for r =a,b.

a---_i = 0 for (p = 0, 27r_.
0_

A solution that satisfies the last boundary conditions in q_ has the form
¢O

_bi (r,q_) = _ R (r) cos_9.
m

m=0

Introducing these into the Poisson differential equation, we obtain an infinite number of

ordinary differential equations for the function Rm(r) if on the right hand side the func-
tion q_ is represented as a cosine series.

oO

4_ i (407
qo-_'o_ = _ PmCOS_O with Po = O, P2m = O, P2m-1 - -Tr2 (2m-i) 2 "

m=O

The obtained differential equations are

d2Ro I dRo

dr 2 + = 0r dr

d2R2m i dR2m m 2

dr2 + -r dr oz2r 2 R2m
= 0 for m= 1,2,..

d2R2m- i i dR2m- i

dr 2 + -r
(2m-l) 2

dr 4_2r 2 R2m-i

16i_o _ l

- _r2 (2m-i) 2

for m = 1,2,...

17



They have for _ fi I/4, 3/4 with the boundary conditions in r the solutions

Ro(r) = 0

R2m(r) = 0 2m-i 2m-1 +2

8i_2gOoa2_2 ( a2_ 2o_R2m_l(r) = _r (2m-t) [(2m-i)2v2._2 ] ( ) _l-k 2m-l) _ (a)r

2_

(i-k)

2m-i 2m-I

2c_ )k2_ _ 2_ l- )2 }

(k 2 :k r

2m-1 v (2m-l) Xa
o

2ol
( i-k )

2m-I

2o_

The solution ¢o (r,(fl) is for v_ fi t/4 and 3/4:

Co(r, go) = i_or2 (_-Tro_) 7_

cos

(2m-i)[ (2m-i) 2 v2 -4_ 2] I r
• (a

2m-i

2o/
)

2m-i 2m-i 2m-I 2m-i
+2

2_ 2_ 2_
(i-k 2a ) a

2m-I - (_) " (k 2 -k )k 2_ r) 2

2_ 2m-i _ (2m-l) (K
2_

( i-k ) ( t-k )

This represents an infinite series in m. It is _ -

The solution of the equationAq5 = 0, which satisfies the homogeneous boundary condi-

tions of the container walls, is given by

cosh (_ +_)
¢ (r, cp, z) = D cosh K c (p) cosy.

Introducing the Fourier series for q_ in the function qSo(r, cp) and satisfying the boundary

conditions at the free surface, one obtains with the Bessel series the constants Dmn.

It is

D2m 0 m 0, i, 2, ....

18



D2m-in

2m-i
2o_

(k2-k

= 8i_oa2_ 2_2 { i7F(2m-i) [ (2m-I)2_ 2 -4_ 2 ] (I-_ _ 2),

2m-i

-2:O_

)k 7r (2m-l)
2_ g2m-ln

The solution of A _ = 0 is therefore

2m-i +2

2m-ln ( l-k2°_ ) -q2m-in

2m-i

2c_

(i-k )

(r, e, z)=_, 8'i_p°a2_2
7T

_ 2C'_" (p*) cosh (_'e + _'a ) cos T

(2m-l) [_2(2m-i) 2-452 ] (i-v*2) cosha _

2m-i 2m-I 2m-I
+2

k 2 -k 2o_) 2o_
12m_i n (i-k 2o_ ) -q2m_in ( k v(2m-i)

2m-i 2_

20L

(l-k )

Here the _mn are roots of C2m_i = 0.

2_

The values g2m-ln' h2m-ln' 12m-ln' q2m-ln

g2m-in} "

are the coefficients of the Bessel series

oO

r 2:

(v) =
n=O

g2m_tn C_'} (p_)

oO

n=.O

2m-i

(r) 20_

2m-1

(a) 2_

h2m_inC* (P_V)

oo

C_ ,.-
12m_ln (P_')

n=0

oO

q2m- in C# (p#)
11=0
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where C " (pq')
_2m-ln r 1

and p_'C #2 (p_) dp*f _2m-1 ,. , = i_,_

k_2m_ln

g 2m-in
f_2m-ln

k_2m_in

p*3C* (p*)dp*/_22m_ln I*

h2m_l n =
2 r}2m-I

2m-lnJk_2m_l n

c* (_*) d_d._' /I*

q

2m-ln

2m-ln

}2m-ln 2m-____i_l+ I

f 2_
p _¢

k_2m_in C '_ (p*)dp*

2m-1

2_ f }2m-in
= }2m-ln

k}2m_ln

2m-1
(I- 2_ )

pq¢

2m-i

2_

/ } 2m.in

C*(p*) do _" / I

I "

The velocity potential finally is

• (r,_,z,t) ,%((r= i_2q_oe ) (_-_) +
sScos_

(2m-l) [_2(2m-I) 2 -4_ 2]

2m-i

(r) 2_ ( i-k

2m-i

20L

2m-i 2m-i 2m-i
+2

2_ 2_ 2_
) - (-_) (k2 -k ) k

r 2_

2m-i

2_

(t-k )

S_2C v¢ (p*) rl*2cosh (_*+ K* )cos_

_r (2m-i) [ 7r2 (2m-t) 2 -4_ 2 ] (l-Vl '_ 2) coshK*

2m-I 2m-1

-q2m-ln (k2 -k 2o_ )k 2_ 7r (2m-l)

2m-i 2_

2o_

(1-k )

(2m-I)

2m-i

2m_ln (1-k 2_

+2

)

(a) +

(41)
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The first term satisfies the boundary conditions at the sector walls while the infinite
series vanishes there term by term. In the boundary conditions at the tank wall r = a,
r = b, the double series vanishes term by term, and the simple summation together with
the first term vanishes after differentiation with respect to the radius r. The corre-
sponding results obtained from this velocity potential are represented in Table i. In the
moment about the z-axis, one recognizes that the first term represents nothing but the
moment of the solidified liquid. By omitting the double series, the moment of the liquid
in a infinitely long container is obtained. As already mentioned, the results are only
valid as long as the apex angle _ _ I/4 and _ =/ 3/4. In these cases, the nonhomogen-
eous solution of the differential equation exhibits resonance conditions with the solution
of the homogeneous differential equation for the function Ri (r) in the case m = i and R3
(r) in the case m = 2. In the Case of a cylindrical container with a cross section in the
form of a circular quarter ring,

Rl(r ) = Clr2+Dir_2+2 i_q_or21nr"
7[

All other solutions of the differential equations in R m remain the same. Here the in-

tegration constants C i and D i are obtained with the boundary conditions for ro For this

tank form the velocity potential, the free surface displacement, and the pressure distri-

bution are obtained by introducing c_ = i/4 and by substituting for the term of the index

m=i in the simple series the value

2k 4 r) ] r } 2k41nk a )21 1 +]-_ Ink+21n (a (a - l-k 4 (r
7[

The term for m = i in the double series in substituting by

cos2_.

)i _o [2fin+gn {2k41nk_--i--_k- i + 2k41nk_ h n cosh (K2+ _2)C2(P2)_[c°s2_

_ (l-_,_)coshK 2
n=O

where the values fin are the coefficients of the series expansion
oO

r

(f)_ln (a) : _ PnC2(P2)
n=O

and are

/_n -

12

fb a r31n (_)C2(}2n a ) dr

a2 _b a rC_.(_2n ra )dr

The terms h n and gn are coefficients of the expansions
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oO

n=0

oO

a ¸ 2

(7-) = _ hnC2(P2)
n=O

and are

ar3c2(_2n r)dra

gn = fb r) dra2 a rC_ (_2n a

h

a2( a C2( r) dr
Jb _2n a r

n

fb a 2 r )drrC2 (_2n a

3. Special Cases. Containers of circular cross section are most frequently

used in missiles and space vehicles. With increasing diameter of the containers,,a sub-

division of the tanks by longitudinal walls to decrease the sloshing propellant masses can

hardly be avoided. For instance, a cylindrical container could be divided into four

quarter tanks. A concentric container also could be of some advantage since, by proper

selection of the diameter ratio, the liquid oscillations could be brought into favorable

phase relations so that the influence upon the total stability could be partially cancelled.

Fluid oscillations in a cylindrical container of annular cross section have been treated

[ 10]. The following will be restricted to the treatment of cylindrical containers of sec-

tor circular and quarter circular cross section. The forces and moments of the liquid

are given in Tables 2 and 3.

a. Sector tank. Let the ratio k = b/a of the inner to the outer tank

diameter approach zero; then we obtain the results which are due to the fluid motion in

a cylindrical container of circular sector cross section. Here the determinant

Am (_) = 0
2_

becomes J' (_) =0
m

the zeros of which are denoted by _mn"

the Bessel functions J (p) = J
m

simple form 2--_

The expansion functions C (p) become simply
r

(6mn a ) ' and the coefficients bran. are given in the

22



b
mn

E

afo mnp2j(p) dp

emnfo emn pjZ ( p ) dp
oo

r(m/4o +3/2A
2a m/4 -i/z) r Jm/2_+2/_+l ( e mn)

Cmn( i-m2/4a2cz ) J_mn m/2a (e )mn (42)

m,n =0,1,2 ......

In the force component the singular solution at r = 0 must be omitted. Therefore,

the value 2/_m n -kC (k_m n) in the forces and moments is replaced by J(Qnn) • The ex-

pression No(_m n) will be substituted by Lo(emn) since f C (p) dp is replaced by fJ

(p) dp. The same is valid for N 1 and N 2 which are replaced by L 1 and L 2. The velocity

potential, the free fluid surface displacement, the force and moment components are

represented for the various excitation forms in Table 2.

In the case of roll excitation, the results for the flow of the liquid in a circular

sector tank can be obtained from the previous results of a container of circular ring sec-

tor cross section by introducing k=0 and substituting for 12m_l n the value f2m-ln and

for g2m-ln the value e2m_l n. These are coefficients of the expansions.

(r)2 =

oO

r)= _ f2m-lnJ2m-l(e2m'ln a
n=0

2_
oO

r)_ e2m-inJ2m-1 (e2m-ln a
n=O

2oz

Again the results are valid only if (_ _ 1/4, 3/4. For _ = 1/4 one substitutes, in the

velocity potential the free fluid surface displacement of the liquid and in the pressure

distribution for the first term (m = l) in the simple summation the value

i _{ 21n r }7r (a) + I cos2q_ .

The term for m = 1 in the double series is replaced by

oO

1 _ (2f -e )cosh(K2+_2)_-- n n
7r J2(P2) cos2_ .

n=O ( i- _ ) cosh K2

Here the values f are the coefficients-of the series expansionn
oo

r 2 r

(_--) In (r) = n=O_ fnJ2( e2m a)
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with f
n

fo r raraln(g)J2(e2m a)dr

fO ra2 arj2 ( e2m g ) dr

and the coefficients e
n

are obtained from the expansion

oo

r
(__)2= _ enJ2(¢2m _ )dr

n=O

with

e

n

f: r )drr3J2(<2m a

a 2 r )dr
a2 fo rJ2 (_2m a

b. Circular cylindrical container. For a cylindrical container of cir-

cular cross section, (_ must be taken to be one. This represents a tank with a side wall

in the _p =0planefromr = 0to r =a. The values a m ,bran ,create therefore

a =0 a =0 a2 = lim _ _ _sin27r_ _ = i (43)
o m _i t_ J_ ( I-_ 2)

8 i

c = 0 = 0 = - - , .... (44)o C2m C2m-1 _ [ (2m-1)2-4] m = 1 2, 3

Fhe value c 2 also vanishes. The limit is

c2= lim{_(c°s27r(_- l) } =0._--i _(i-_ 2)

To obtain the solution for the circular cylindrical container, one chooses the

excitation in x-direction at which the side wall does not disturb the motion. For this

reason, only the expression b_ is needed. Considering the singularity of the gamma-
zn _ lafunction at the argument zero and the recursion iormu of the Bessel function

xJ' (x) - vJ (x) =- xJv v v+l (x)

?

from which for x = c n as a root of the equation Jt ( en) = 0 we obtain the value enJ 2

(e n) = J1 (En)- The expression b2n finally is

2a

b2n = (E2n_l)jl(En)

The velocity potential for translational excitation in x-direction is therefore

(45)
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{r n }i_t

4_(r, go, z, t) =i_x e acosq_ + 2 (J12 (D)_2c°sh (_+_) (46)
o -i) Jl(e ) coshK( I-7 2)

n

The natural frequencies of the liquid in cylindrical container of free fluid surface and

circular cross section are given by

f _ n i h
n 2 7r - 2v en tanh ( En a )

The zeros of the first derivative of the Bessel function of first kind and first order are

eo i. 8412, _i 5. 3314, E2 8. 5363, <3 = ii. 7060.

As can be seen from the formula and from the numerical result represented in Figure

2, the natural frequency of the liquid in a partially filled container changes considerably

at constant longitudinal acceleration only for small liquid height (h/a < i ).

This is true because the hyperbolic tangent practically assumes the value one for values

of (h/a)> i. The natural frequency increases proportionally to the square root of the

longitudinal acceleration g. Furthermore, it can be seen that the Eigen frequency of the

fluid with increasing radius a changes its value like i/-Y_ This indicates that for

increasing tank diameter, the natural frequency of the liquid becomes smaller. From

the free fluid surface displacement z (Table 3) one concludes that the first term rep-

resents the displacement with respect to small excitation frequency. For these the

surface displacement of the liquid (neglecting terms of _24) is a plane of the form

r cos go, since the required pressure is replaced by the static pressure. With increas-

ing excitation amplitudes Xo, the free surface amplitude becomes larger, while for in-

creasing longitudinal acceleration of the container the disturbances of the free surface

become smaller. The wave form of the free fluid surface for excitation frequencies

before the first and second resonance is presented in Figure 3. The surface displace-

ment of the liquid for various frequency ratios is given in Figure 4. Here the given

curves for the displacement correspond to the indicated points Of frequencies in the

magnification function for the displacement of the free fluid surface at the container wall
( Fig. 5).

In the fluid force the limit value is

{ I_--_l 7r_ (m2-4o! 2) Jm (c )+Lo(emn mn

m__2 2_
= J1 ( _n )
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A similar result is obtained for the moment where L2(E ) --Jt(Cn)/ E2
n n

and lim -i) si__n2v_____8_ 2
cc--_l _ ( m2_4ofl ) = 2.
m--_2

In the force the first term again can be identified as the inertial force of the liquid

(Fig. 6), while the first term in the moment represents the moment with respect to the

shifting of the center of gravity of the liquid for small frequencies (_24 terms neglected)

(Fig. 7). For surface displacement proportional to r cos _ in which the surface as-

sumes an angle a from its undisturbed position, the shifting of the center of gravity is

a2tg_
X _ •

s 4h

Here, tgc_ = k'/g.

fore

The contribution of this part to the total moment of the liquid is there-

h

M = mgx s = -m_:'a/4 _ •Y

The shifting of the center of gravity in vertical direction can be neglected, because it is

represented by a term of the second order• The velocity potential for rotational •exci-

tation O = @ e i_2t is
o

• . i_2t 2 f r z A J1 (_)_2

• (r,_, z, t) =-1_Ooe a cos_ }a a +2 E (e2 -i)Jl(e_)coshK(i-_2) "

E (47)KK . K KT + _) cosh (_ 4_) -4_smh _ sinh_ -2sinh(_ -_)

The free surface remains horizontal for very small and infinitely large excitation fre-

quencies. The wave form of the free surface is presented in Figure 4 for various fre-

quency ratios. Figure 5 shows the magnification function of the free surface at the tank

wall. The force component is shown in Figure 6, and the first term in the force repre-

sents only the weight of the liquid. In the momentthe first term again represents the con-

tribution of shifting of the center of gravity of the liquid for small excitation frequencies.

The free surface in that case remains horizontal and has, with respect to the tank

bottom, an angle c_ = @o" The shifting of the center of gravity therefore is (tg _ _ _)
i_2t

a2tg _ a0oe

4h 4h/a

The contribution of the shifting of the center of gravity to the moment about the center

of gravity of the undisturbed liquid (origin of the coordinate system ) is therefore

i_2t
mga0 e

O
M _ -- •

y 4h/a

The magnification function of the moments are represented in Figure 7.
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c. Container with quarter circular cross section. The results for the
liquid motion in a container of a quarter circular cross section are obtained by substi-
tuting into the equations of Para. a. (_ = i/4. With this the velocity potential results in

• (r,_, z, t)

where
2

a =--,a
o _" m

oO

E
#=0

The values e
mn

= i_x e i_2t{o rcosq_+

m+i

= (-1) b -
v (m 2-1/4) ' mn

J2m+2tu+i (emn)

(2m+2#-1) (2m+2#+3)

a mb mn c°s2mqgc°sh(K+_) J2m( P )_72

(i-_? 2) cosh g

i 6a ¢mn ( m 2- i/4)

( ¢_an-4m2 ) J_m (¢mn)

(48)

!

are the roots of the equation J 2m (¢mn) ' For a container of circular
symmetric cross section the orthogonality conditions of the trigonometric functions are

responsible for the appearance of only one class of resonances in the forced oscillations.

Here, also, as in the sector tanks the other class appears. The results of the liquid

motion in this tank are shown in Table 3. Table 4 represents the roots in the equation

J'2m (emn) =, 0. From these it is recognized that the zero root is larger than the first
(because of Jo = - Jr) • This indicates that the zero Eigen frequency is larger than the

first Eigen frequency. Figure 2 exhibits the ratio f /¢g/a. They present essentially
the same behavior as the frequencies in a cylindrican_ank of circular or annular cross

section except that the Eigen frequencies are slightly larger than those of the circular

cylindrical container and that they are closer together. Figure 8 represents the wave form

of the free surface for excitation in x-direction with forcing frequencies in front and

shortly before first resonance (wi0 = 5.5 i/sec. ) as well as between first and second

resonance (Woo = 6.2 i/sec. ) and shortly after second resonance. In the liquid force

and moments, the values for L ° and L 2 are

2
L - L (e ).o ¢ J2m+2#+i mn

mn p=0

)
L 2 - 2(4m2-i) _ J2m+2#+i(emn

e (2m+2#-I) (2m+2#+3)
mn #=0

In the force Fx, the first term again can be identified as inertial force of the fluid
(Fig. 9). The last term in the moment represents the static moment (Fig. 10).

The velocity potential for rotational excitation 0 = 0 e i_2t becomes
O

i_2t{ }_5(r, qo, z, t) = -if_0oe rzcosqo- [ Acosh_+Bsinh_] J2m(P ) cos2mw (49)
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Here the values A , B are the corresponding expressions 38a and 38b if one substi-
n n The first termtutes the approprian_evain_u_sfor a , b , and for _mn the values Emn.m mn

in the force represents the force component with respect to the weight of the liquid. The
magnification function is shown in Figure il, while thati_t r the moment is represented in
Figure i2. For roll excitation of the container q_ = q_oe , the velocity potential is

i t{----- 7r
_ (r,_o,x,t) i_¢oe r 2 (_ __)

2a 2 ,_r)2 _ r i I 2a2+ _ 'a" _ln(_) +_ cos2_+--

+ _r 4m-22a2cos[(4m-2) q_] . ) _ (r/a) 2
7r (2m-i) [ (2m-i) 2-1] (2m-i).

[f2m-in -e2m-ln (2m-1)]_?'_"2 J4m-2 (fi'_)

(2m-i)[ (2m-i)2 -i](i-H e"2) coshK_

" _2

v- a 2 (2fn-en) cosh (_ +U_" )_?_" J_. (p_")cos2_
cosh (K + C ¢) cos (4m-2) q_ +-- .,. ' (50)

( i-_?_ '2) coshg_"

Here the values _n are the roots of the equation J'2 (_n) = 0 while the values [2m-in
I

are solutions of the equation J4m-2 (e2m-in) = 0. Furthermore, it is

8 _o J2/_+4 (On)

fn=- (_2_4)j_(_n) _ (#+i)(/_+3)

#=0

4
e --

n (_2 -4) J2(_ )
n n

4(2m-i)

= -2 _4(2m_1)2]f2m-ln [C2m_l n J4m_2 (_2m_l)

and

e2m-ln

2m_2m_ln (2m-l)

(m-i) [ _m_ln-4 (2m-i) 2] J_m_2 ( C2m_ in)

(C2m_in)( 4m+2#- i) J4m+2/_- i -

'_ (2m+2#-2) (2m+2p-i) (2m+#) (2m+t_+i)
p=0

One recognizes from all these results that only one-half of the natural frequencies appear.

Figures i3 through i5 illustrate the various magnification functions for the forces and

moments of the liquid. Here the value Lo, LI, and L 2 are
oO

2

L - _ _ J4m+2#_l(E2m_in) •
o C2m-ln p=0
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Li

L2

oO

2m-i

_2m-in t_=0

(4m+2#- i)J4m+2_- i(_2m- in)

(2m+p-i) (2m+p)

co J4m+2_t_i ( ¢2m_in )
2(_4m-i) (4m-3) _ (4m+2t_+l) (4m+2p-3)

E2m-ln p=0

SECTION III. THE MECHANICAL MODEL

A. DISCUSSION

Since in the frictionless liquid the magnification function exhibits singularities at

the resonances, all previous results are not applicable as long as the exciting frequency

is too close to the Eigen frequencies. In the vicinity of these, finite values occur which

influence the stability of the space vehicle considerably. Especially at the lower Eigen

frequencies of the propellant, liquid forces occur which are a multiple of the inertial

forces of the propellant. An exact solution of damped liquid vibrations is practically

impossible. However, a good approximation can be obtained by treating each vibration

mode of the liquid as a degree of freedom and representing it as a spring-mass system.

Since the mode shapes are not considerably changed by the small damping of the liquid,

magnitude and location of the spring constants and sloshing masses can be derived from

the results of the previous paragraph. In this mechanical model, damping can be intro-

duced in a simple way in form of linear viscous damping. Actually the forced damped

fluid oscillations represent a nonlinear vibration problem. Since the treatment of a non-

linear system of many degrees of freedom represents considerable difficulty, equivalent

linear damping is introduced. From this, the magnification functions and their phases

can be numerically determined for various damping factors and will be compared with

experimental values. This way the equivalent linear damping factor of the liquid is ob-

tained. In the following, the mechanical model will be derived only for the most im-

portant practical container arrangements. The determination of the various elements of

the model will be exercised in paragraph 2 of this section.

B. THE MECHANICAL MODEL FOR THE DESCRIPTION OF LIQUID MOTION

In an oscillating container the liquid oscillates only in close proximity of the free

fluid surface, while in the lower part of the container, it follows the motion like a rigid

body. This indicates that the sloshing mass m n corresponding to the appropriate vi-

bration mode and the corresponding springs with stiffness kn/2 (with which the slosh

mass is fixed at the tank wall at a distance h n from the center of gravity of the undis-
turbed liquid) have to be attached in the proximity of the free fluid surface (h -412 ).

This happens with increasing order of vibration modes. The nonvibrating liquid in the

lower part of the container is described by a mass m o and a moment of inertia Io. This

mass is attached rigidly to the container at a height h o below the center of gravity of
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the liquid. (Fig. t6)

To make the mechanical model equivalent to the original fluid system, the sum
of the model mass must equal the total liquid mass.

c_

m =too+ _ m
n

n=l

For small oscillations, the center of gravity of the liquid shifts horizontally only in the

first approximation. Therefore

must be satisfied.

oo

mh = _ mh
0 0 n= 1 n n

The spring constant, k n, is chosen in such a fashion that its ratio to the mass of the

sloshing mode represents the square of the Eigen frequency

k

o} _ n .
n-i m

n

For rotational excitation about the origin, not all of the liquid participates in the motion,

but a part of it remains completely at rest. So, a frictionlessly mounted massless disc

with a moment of inertia, Id, must be introduced at the origin. Thus, the effective

moment of inertia of the liquid becomes
co

If = Irigid-I d = I + moh2 o + _ m h 20 n n
n=l

Linear damping is introduced in the model by attaching two dampers with the

damping coefficients Cn/2 between the mass of the nth vibration mode and the tank wail.

In addition, one must introduce a damper, Cd, between the disc and tank bottom, since,

for rotational excitation of a nonfrictionless liquid, more fluid participates in the motion

than for a frictionless one. The magnitude of the damping coefficients can be approxi-

mately determined from torsional vibration experiments of a completely filled, closed

container of equal liquid height. The damping coefficient, c n, will be obtained from

forced vibration experiments of the free fluid surface. The linear damping terms are

introduced in the usual form (c n = 2m n co Tn ) where Tn represents the damping factor.n
The equatiol_s of motion of the model are now derived with the help of the Lagrange

equations. For this reason one determines the kinetic and potential energy as well as

the dissipation function. If one considers Yn as the displacement of the sloshing mass,

ran, with respect to the container wall, with y the tank displacement in y-direction, with

W the rotation about the z-axis, and with @ the rotation of the disc with respect to the

tank bottom, the kinetic energy will be:
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m _D

o 1 i w
T - 2 (5_ + h _b)2+ _ Io_92 + -- Lo _ 2

n=l

i
mn(Y n+y+hn_b)2 +_ Id(_+¢)2

The first two terms represent the kinetic energy of the mass, m , which is
o

rigidly connected with the container. The series describes the kinetic energy of the

various modal masses, m , while the last term represents only the kinetic energy of
the disc. The dissipation_unction is

D- 21 _ Cn_n 2 + 12 Cd_2 = _ mnC0nTnS;2 n+_t2 Cd_2'
n=l n=i

where the sum represents the contribution of the dash pots between the modal masses

m n and the container, and the last term is due to the damper between disc and tank
bottom.

The potential energy is

oO oO ¢4)

1 1 i_l 2V=_ g_2m h - _ m -gq_oo _ gq_2 h _ +-
n=l n n mnYn 2 knYnn=i =

Here, the first term represents the potential energy due to the lifting of the mass, m,

during rotation, while the second and third terms describe the same fact for the moda_

masses. The last term is the accumulated energy in the springs. The first two terms

in the potential energy will cancel each other due to the condition of the center of mass

law.

The equations of motion are derived from the Lagrange equation

If one considers y,

OD OV

d )+ +at 0(_.i Oqi - Qi "

_, _ and Yn as generalized coordinates and

Qy=-F , Q =-M z, Q_, =0, andQ =0Y _ Yn

as generalized forces, the equations of motion are then

m ('5}+h _) + _mn (Yn- +Y'+hn }_) =- F I

o o yn=l

(51)
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io_+ m h2__g _ mnYn+ 2m#n (_'n+hn_)+Id(_+_') = -M0 0 Z
n=l n=l

I d (_b'+_) + Cd_ =0 .

(52)

(53)

mn(Y'+Y'n +hn_) +2mnTnWnYn +knyn-mng_ = O.
(54)

The first equation is the force equation, the second is the moment equation, and the

third describes the motion of the disc, while the last one represents the equation of

motion of the nth modal sloshing mass. With these equations, the forces, F , and the

moment, M z, can be determined for the particular excitations by introducin_the results

of the equation of motion of the modal masses into the other equations. Instead of the

spring-mass system, a pendulum system could also have been applied.

i. Solution of the Equations of the Model. Introducing the values _ = 0

@ = 0 into the equations of motion, that is, considering the case of translation with

y = yo eiflt, one obtains from the equation of the modal masses, m n,

l_/, ,2 _1 i _'
/ _ I1-1 " -

Yn- i-,2n_l+2iTn_n_l Y'n = l-,2n_l+2iTn_n_t

With this, the force (eq. 5i) is obtained to be

.[I+Z m 2
n _n-t

F = -my " 2 •y n=l m (1- 7 _l+21Tn_n_i )

(55)

and from equation 52, one obtains the moment to be

m (g/W2n_i+hn_2n_i)
n

M z =- m'_ 2 m (1-,2 n l+2iTn_n_l)
n--1

i_t
In the case of rotation about the z-axis, it is y = 0, _0 = _o e ,

One obtains for the motion of the modal mass, m n, from equation 54

(hn_2n_l+g/W2n_t)_

Yn- ( i- _2n_l+2iTn_in_ 1 ) '

and from equation 51 the force

and

(56)

i_t

¢ = ¢oe
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oo m
n

F = -m_ _ m
Y n=i (i-_2n_ i+2iTn_In_ l)

(57)

while from equation 52 the moment is obtained to be

M = _ +m h2+ m h2 -m n
z oo nn

n=i n=l m

(772 _h 2+g2/_2 .w 4 _÷2gh /W 2 _)]

_n-1 n n-1..__n-1 n n-1 [

[

liquid oscillations at the free fluid surface (Yn

As could be expected, the moment due to translational displacement, Yo = i, is equal to
the force due to the rotation, q_o = i. Assuming that _ can be approximated from con-

siderations of a completely filled and closed container, one obtains, by suppressing the

= 0), from the equation

Irigid_ + Ida" =O . (58)

Id(_+_') +Cd_ = 0 . (59)

From this we obtain

_'- {l+ (Cd/_id)2}

( d/Id)_C

+ { i+ (Cd/_id) 2}
(60)

With this, the moment of the damped model is given by z_ _

fzgn nrr / ",,1 - mn_Wn_

M =_ 411 +m h2+ _ m h2+l_(i-_)|+m_ n\ -

z [[o o o n=i n n a_ _zld c_i/j n=l m

Cd_2I _

+

+ w 4 g2 2 +hnNn_
n-lNn-i

(l-_72n- l+2iTn_?n- i)

(61)

The mechanical model, as it was derived here, is valid only for containers of rotational

symmetry, that is, for tanks with circular and annular cross sections. It can also be

applied to a tank arrangement of four-quarter containers, which are gaining more im-

portance and are of special interest. Since the side forces of four-quarter containers,

perpendicular to the direction of excitation, cancel each other and since the same is true

for the moments about the axis of excitation, the same model can be applied. One has

only to consider that the square of the Eigen frequency is
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k
mn

CO2 _

mn m
mn

and the total mass of the liquid is given by
oO oO

m=m +2 m
o mn

m=i n=l

The number of mode shapes is increased considerably, since the infinite number of mode

shapes in ?-direction must be added to those in r-direction. This is expressed by the
double index.

The equations of motion are:

m o (Y'+ho_)+ 2 2 mmn(Y'+Y'mn+hmn _) = -F
m=l n=i Y

oo oo oo

(moh2o+Io)_+ S 2 mmnhmn(Y'mn+hmn _) -Id(_+_')-g
m=t n=t m=l

oo

M
S mmnYmn - z
n=l

Id(_+_') +Cd$ = O.

"g Y -t"0')2 l _y_ -g? = 0Y÷Ymn+hmn_'+2C°m-ln-i mn mn m- n-_ m,,
(m,n= 1,2 ....... )

From this, similar results for the forces and moments can be obtained as in the pre-

vious case.

2. Determination of the Mechanical Values. After we have derived and

solved the mechanical model, the mechanical values have to be determined. This deter-

mination will be performed by comparing the values of the undamped mechanical model

with the results of the ideal liquid motion (II, C, 3, bandlI, C, 3, c). However, someof

these results must be brought into a form that compares with the mechanical model by

certain series expansions of Bessel functions and their zeros of the first derivative. In

the following, the determination of the mechanical values will be performed for a con-

tainer with circular cross section. For containers with annular and four-quarter cir-

cular cross section, the results can be obtained in a similar way and are presented in

Table 5.

Comparison of the forces due to translatory excitation of the undamped (Tn = 0)
mechanical model (eq. 55) with the force of the liquid (Table 3),
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Fy = -if i+2 n:1__(_n-I-17(I-_ 17

results in the ratio of the modal mass m n to the total mass of the liquid m
h

m 2tanh( 6 )
n._ n-lK

(en-i h-)(c2a -1) n= 1,2 .......m
n-1

(62)

(63)

Comparison of the moments requires a t ransformation of the liquid moment with

c_

i

! 24 n=l en-i( -

and

1-
1

- tanhK tanh _K (64)coshK 2

It is .g__ h 2 4 ,¢
w2 + - [ 1- - tanh

M = -my" 2 2tanhg n-i 2 _n-i K 2]

z n=l K(e2n-l-l) (i-_? 2_ i) (657

Comparison with equation 56 results in the already obtained mass ratio mn/m and the
height ratio

hn _ 1 [1 4 tanh _-e2-1-- h) lh 2 h " ( 667a
E --

n-la

For rotational excitation the liquid force is, b_ omitting the part due to gravity,
g 2 4 K

oo (.02 + _ _n_l[l--- tanh )]
.. v_ 2tanhK n-i K (2

Fy = -mgo n___I K(e2n_l-l) (i-_2n_i) "
(67)

In comparison with equation 57 the force of the mechanical model results, as one would

expect, in the same ratios mn/m and hn/h. The moment of the ideal liquid will be trans-

formed with the help of the effective moment of inertia If for ideal liquid in a completely
filled and closed container into the form

g2

_a oo 2

M z -m_ 2If +2 2tanhK tin-it°n-1: "rV-i

_+ gh 4 K
w2 ( 1- - tanh_)+ --

n-t g

( 1-_2n_17

h2_2n- i

(68)
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This was obtained with the series expansion equation 64.
ideal liquid is

The moment of inertia of the

f h )2 1 =_ [i-2tanh(2)] _If =ma2 _2 (a-- + 4-8 n _-_ic-_-_--i_ '
n-x n-1

(69)

The terms in frontof the summation represent the moment of inertia of the rigid circular

cylinder, while the infinite sum represents the fact that we deal with a liquid. Com-

parison with the mechanical model must again result in the ratios mn/m and hn/h. In

the same manner, one can obtain the mechanical values for containers of annular and

four-quarter circular cross section. The results of these investigations are given in

Table 5.

The magnitude of the modal masses and their locations depend only on the ge-

ometry of the container. Thus, one will expect that the influence of the liquid propellant

upon the stability of the total vehicle will be mainly determined by the tank geometry.

Since the liquid nearly always sloshes in the vicinity of the free fluid surface, the ab-

solute magnitude of the modal masses at moderate fluid heights ((h/a) > 2) would be

independent of the filling. With increasing Eigen frequency, the disturbances penetrate

less deeply into the liquid. This means that the modal masses of higher sloshing modes

approach more and more the free fluid surface (Fig. 17). For decreasing fluid heights,

the location of the modal mass shifts to the immediate vicinity of the center of gravity

of the liquid.

The mass ratio mn/m increases with decreasing liquid height, h; that is, in long
containers where the ratio of fluid heights to container radius is large, only a small

amount of the total liquid participates in the oscillation. In short tanks, a larger amount

of the liquid oscillates (Fig. i8). Figure 17 and equation 63 show that for containers

with circular cross section, the first modal mass represents the main part of the oscil-

lating mass. In a circular cylindrical tank, the mass of the second sloshing mode is

usually less than 3 per cent of the first mode. Only for small liquid heights ((h/a) < l),

the second modal mass will reach a value of 8.4 per cent of that of the first. At this

point, one must prove that the free surface displacement at the tank wall is always

smaller than the liquid height, since otherwise the solutions will no longer be valid. In

the container of annular circular cross section, the magnitude of the modal mass de-

pends also on the diameter ratio. In the most unfavorable case of k = (b/a) _ 0.45, the

mass of the second sloshing mode is about 12 per cent of that of the first one. Again,

we can conclude from this that, for stability investigations, the masses of higher slosh-

ing modes, which are usually well separated from critical frequencies of the space ve-

hicle, can be neglected. For four-quarter tanks, the situation is different, since due to

the tank geometry, other vibration modes appear. Figure i9 shows that the mass of the

consecutive sloshing mode still represents 43 per cent of the first one, indicating that

in stability investigations this second mode can no longer be neglected. A comparison
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of the three main container forms now shows clearly that the masses of the sloshing
modes are definitely influenced by the geometry of the tanks. A comparison of the mag-
nitudes of the oscillating modal masses shows that a propellant container with a circular
cross section is the least favorable one. Here the oscillating mass is about i. 43 p a 3.

By separating the tanks with inner tank walls the oscillating mass can be reduced in two

ways. By choosing a concentric wall with half the tank diameter (k = 0.5), one obtains

for the modal massavalue of about 0.96 _ a 3 if only the outer tank is filled, and i. i4 _a 3

if both tanks are filled. Here one should notice that the phase relations of the propellant

in these two tanks in the important frequency range decrease the effective mass rather

than increase it. A much more favorable situation is obtained by subdivision of the tank

with radial walls, for instance, by subdividing into four-quarter tanks. Here the modal

mass belonging to the first Eigen frequency is only 0.46 pa3; that is, it is only about a

third of the value of the circular cylindrical tank. If all modal masses in the four-quar-

ter tank arrangement were added and the sum were compared with the circular cylindri-

cal tank, it would only total about half of the mass. It can be concluded that subdivision

of tanks into sector tanks has great advantage with respect to the prevention of the effect

of propellant sloshing upon the stability of the total vehicle. Furthermore, it has the

advantage that the vibrating masses are distributed to various sloshing modes. This

means they have their largest influence at different frequencies.

The non-oscillating mass m o is located a little below the center of gravity of the

liquid (Fig. 20). The spring constant kn is given by the equation k n = CO2n_im n. The
moment of inertia of the disc for containers with circular and annular cross section is

given in Figure 2i. For decreasing liquid height, the moment of inertia increases with

decreasing diameter ratio.

After the introduction of the linear damping terms into the mechanical model,

damping can be ir_troduced into the theory of liquid motion. In the solution of the me-

chanical model, we have introduced in place of the resonance terms (i 2-_)n_l) the values
(i-_ 2 .+2i T _? ,). Performing this with the formulas of the results of the ideal liquid (62)

n- n n-i
(65) _ _67) _ an_l (68), one obtains the results for the damped liquid motion. In Figure 22,
the magnification function, ] F /y I, of the force for the translatory excitation is given

y °l
with the damping factor 7n as a parameter. The parabola is the force if we consider the

liquid as rigid. From there, it can be seen that, in the first resonance, very large

forces can appear and that they are a multiple of the inertial force. Figure 23 shows the

phase of the force. Introducing the experimental results into these figures will lead to

the equivalent linear damping coefficients by comparison with the theoretical curves.

Other possibilities for determination of the damping can be obtained by measuring the

surface displacement, pressure distribution, and the moments and their phases (Fig. 24

and 25). With these, we obtain the same results as with the force measurements. The

free surface displacement measurement will be obtained at the tank walls in the plane
of excitation.
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Another method, which represents an approximate determination of the damping
directly from the experimental results, can also be applied. Since we are particularly
interested in the magnitude in the vicinity of the first resonance, we consider the mag-
nification function about the first resonance. Its maximum will be close to the natural

frequen_v_if the damping 7n = 7 is small. The amplitude at the natural frequency is
i/2 T_ i-7 _ which for small damping can be approximated by i/2 7. Since the damping
factor not only depends on the maximum height of the magnification function but also on

the points Pi and P2its width, one chooses on the response curve at the height i/2 7 _f'2
for which

i _2

(Fig. 26). This is a biquadratic equation for which_i and 72 can be determined. It is
_2-_I = AT _ 27" The results obtained in this manner are in agreement with those ob-

tained from the measured experimental values as read off from the theoretical curves.

An experimental program using a 1054nch diameter container yielded the fol-

lowing:

a. Theoretical results have been verified.

b. Approximate values for the equivalent damping of the liquid have. been ob-

tained.

c. The efficiency of various damping devices has been determined.

d. The effect of the difference of the viscosities of the conventional propellants

compared with the viscosity of water could be neglected.

The container is mounted on a carriage which was excited harmonically with con-

stant amplitude (Fig. 27 and 28). The nearly conical tank bottom part is substituted in

the theoretical investigations by an equivalent circular cylinder whose length is deter-

mined by the volume of the conical part. The forced frequency is varied up to i. 9 cy-

cles. Since the viscosity of the conventional propellants is similar to that of water and

does not show an important influence, water was used for the experiments.

With these results, the damping of the modal masses can be determined. Only

the moment of inertia and the damping of the disc are missing. For these we go back to

equations (52) and (53) and set the displacement Yn of the modal masses m n equal to

zero; that is, we consider the completely closed container. With the formula of the

moment (58), the effective moment of inertia, If, of the liquid, which is given for ideal

liquid by the formula (69), will be substituted by If. Furthermore, there is an addi-

tional term due to the damping of the liquid in the completely closed container which is

of the form _ _, as can be concluded by the comparison with the moment of the mechani-
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cal model (61). The values, if and _, will be obtained by torsion spring experiments of
the completely closed fuel container. They depend upon the properties of the liquid, the
tank geometry, and the number and size of baffles in the tank. For the determination of
the values df the mechanical model, I d and Cd, we consider the equation (58), which
with (60) can be written in this form,

-- o.

Here

Id

if = I
rigid i+( Cd/t2I d) 2

and

c d
_=

1+( Cd/_2I d) 2 •

Once the values i_ of the effective moment of inertia and _ of the effective damping have

been experimentally determined, the moment of inertia, I d, of the disc and the damping

coefficient, Cd, can be obtained. One determines from the above equations

Irigid - if + _2(irigid_if ) 2

il+ _2 -if) 2 1 "_2(Irigid

Id=

and

c d =

For small damping, the term _q5 in the moment can be omitted and the effective moment

of inertia can be assumed to be of the form (69) as obtained by the theory of potential

flow. Figure 29 shows the effective moment of inertia for a completely filled and closed

container with circular and annular cross section. For small and large fluid heights,

the effective moment of inertia approaches the value of a rigid body. For increasing

diameter ratio k, the minimum (which is located approximately at a place where the

height equals the outer diameter) shifts in direction of larger fluid heights and has a

larger value. In the container with circular cross section, it is located at a fluid height

h _ 1.72a and the moment of inertia is only 16 per cent of that of the rigid body. Re-

sults of the damping measurements are given in Table 6. There the damping values,

which have been obtained from the free surface displacement, have a considerable

scatter. This is caused by the disturbed flow field around the baffles. The damping

values have been obtained from three different fluid heights: h 1 = i. 40 meter, h 2 = 1.65

meter, = 2.70 meter. At the last two fluid heights, 3--inch wide stiffener rings have

been attached in the tank. As one can conclude from the results of the mechanical

model, the modal mass for a fluid height, hi, is about 42 per cent of the liquid mass,

33 per cent at the fluid height, h 2, and about 28 per cent for the fluid height, h 3. This,
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of course, has an influence on the results of the damping values. Furthermore, the
location and width of the baffle have a decisive influence upon the damping factor.

SECTION IV. INFLUENCE OF PROPELLANT SLOSHING UPON THE
STABILITY OF A SPACE VEHICLE

The motion of the liquid propellant in the tanks of a space vehicle represents a
potential hazard for stability and control due to its low natural frequencies which are
usually very close to the control frequency. The stability of a space vehicle can be
tremendously influenced by this propellant sloshing. The possibility of the destabilizing
effect of the propellant is investigated by variation of parameters. The propellant
motion in the containers will be described by the mechanical model as derived in Section
III. The stability boundaries are given by the necessary damping values of the propel-
lant along the vehicle. The influence of tank geometry (which essentially determines the
magnitude of the modal masses of the liquid), the influence of the location of the tank,
and the influence of the various gain values of the control system are investigated. Also,
the influence of additional control elements upon stability will be studied. To simplify
the computation, aerodynamic effects and the inertia of the swivel engines will be neg-
lected. As shown in the previous section, the first modal mass of the liquid is sufficient
in circular symmetric containers to describe the motion of the propellant; higher modal
masses have practically no influence on stability. Only in the four-quarter tank arrange-
ment, the two lower modal masses have to be considered. This seems necessary be-
cause the second modal mass can no longer be neglected with respect to the first one.

The control moments will be produced by swivel engines. In the following, a
space vehicle is treated with a simple control system and additional control by an accel-
erometer. The coordinate system has its origin at the center of gravity of the undis-
turbed space vehicle. The accelerated coordinate system is substituted by an inertial
system such that the space vehicle is subjected to an equivalent field of acceleration
(Fig. 30). The centrifugal and Coriolis forces, which result from a rotation, will be
neglected. Furthermore, the acceleration in direction of the trajectory, the mass, and
the moment of inertia will be considered constant. The following investigations are re-
stricted to the interaction of translatory, y, and rotational motion, q_, as well as the

propellant oscillations, Yn' and bending vibrations, _?n' in the plane. For simplification,
the so-called disc motion is omitted. It is assumed that only half of the thrust is avail-

able for control purposes. In the numerical procedure, the bending vibrations will not

be treated.

A. EQUATIONS OF MOTION

The equation of motion perpendicular to the trajectory is with m as the total mass

of the space vehicle, m k as the modal mass of the propellant, q_ as the deviation of the
attitude angle, F the thrust, and fl as the swivel angle:
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.. F T

m_" + _ mXy x -Fq_-_- fl + F _ _?vYEv = 0. (70)

The factor i/2 in the control term is there because only half of the thrust is available for

control purposes. The displacement of the modal mass, mxof the propellant with respect

to the tank wall is denoted by YX" The transversal displacement of the space vehicle from

its trajectory is given by y. The last term in the equation represents the generalized

translatory force of the thrust with respect to bending. The term 1?v denotes the gener-

alized bending coordinate of the _th bending mode, and Y' represents the slope of that
E_

mode at the swivel point of the engines.

In the containers in which the sloshing is not considered, the mass of the struc-

ture and the propellant being considered as rigid is denoted by m' per unit length. I'
a o

is the moment of inertia of the structure about the center of gravity of the cross section,

mox is the nonsloshing mass of the liquid in the container X, and Xox is its distance from
the center of gravity. Furthermore, Iox is the moment of inertia of the nonsloshing

mass about its center of gravity and x X is the location of the modal masses. Consider-
ing I as the effective moment of inertia of the vehicle about its center of gravity, the

_quation of motion with respect to pitching (with respect to the center of gravity'of the'-
vehicle) is obtained

F .•

I_ +_-- XEfl ÷ _ (mxXxY X - gmxyx) - F _ (XEY_u- YE_)_?v : 0. (71)
X v

Here, it is

I: f(x2m a + I'0 ) dx+ _ (moxX20x + Iox ) +_ mXx _ - mk 2
X X

The term x_ is the distance of the swivel point of the engines from the origin and k is
the radius o_ gyration of the vehicle• The last term of this equation represents the

generalized force of the thrust with respect to bending• Y_ is the lateral displacement
_-/P-

of the _th bending mode at the location of the swivel point. In the further treatment, it

is useful to refer all length to the radius of gyration k =,] I/
e

V m

The equation of the modal sloshing mass is

Y'X + 2wkykYk + 2 _ ..• _xYx xx_ - g_ + _" + _ (Yux{_'v+ gY_ _/u)= 0, (72)

where X represents either the number of containers and/or the various modes of the

liquid in the containers. The term coX represents the natural circular frequency of the
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liquid and 7X represents the damping factor. The longitudina ! acceleration is g = F/m.
The slope of the vth bending mode at the location of the modal mass is Y'vX"

As space vehicles increase in size, the bending frequency approaches more and

more the control frequency and the lower Eigen frequencies of the propellant. This in-

dicates that in many cases the bending vibrations can no longer be neglected. The e-

quation of the vth bending mode is

m X ..

{7v + ¢Ovgv_v + 2 + _ MB (yky k + gyky_) - g_MB/m YPE p = 0. (73)C°vrl v X

Here co represents the natural circular frequency of the vth bending mode and g the

corresponding structural damping, which usually is proportional to the amplitud v (re-

storing force) of the elastic system and in phase with the velocity of the vibration. Here

it is represented as linear viscous damping. This was preferred to avoid complex coef-

ficients in the stability polynomial. It is also justified for small damping since the

structural damping shows its largest influence only in the vicinity of the bending fre-

quency. The generalized mass, MB, is

M B f m' y2dx+ fl'y'2dx+ _ (-- v 2 +I y,2 +_ v2 ,= a V J o P 1110XIOXV XOX O_.P 11"X-tXV/'
X

where YoXv and Y' represent the displacement and slope of the vth bending mode ato%.v

the location of the lth nonoscillating liquid mass.

Actually, the control equation cannot be written as a linear equation. However,

translatory and rotational vibrations usually occur at small frequencies where the con-

trol elements can be considered as essentially linear. Nonlinearities usually occur at

higher frequencies, as a cause of saturation of amplifiers, and limited output of veloci-

ties. Without wind disturbances, the control equation can be written in the form

fl (fl)= f2(_°,Ai),

where fl and f2 are functions depending on the form of the system.

can write these as

In linear form one

vfl ( (v) + g2A"
p U

Here Pv are the so-called phase lag coefficients, and _9i is the indicated deviation from

the trajectory as indicated by the gyro. A. represents the indicated acceleration normal
.I

to'the longitudinal axis of the vehicle. It is:

T

99 i = _p - _ rlvYvG,
P
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where Y' is the slope of the vth bending mode at the location of the g_yro. For a rigid
vG

space vehicle where the elastic behavior of the structure is neglected, it is sufficient

to use

fi = ao_+al_+g2A i (74)

Here the last term with a gain value g2 is proportional to the indicated acceleration per-

pendicular to the longitudinal axis of the vehicle and is obtained by a measurement with

the help of an accelerometer. The term g2 is a measure of the strength with which the

accelerometer influences the control system. In this form of the control equation, the

time derivatives of the control angle, fi, which with increasing frequency, cause in-

creasing phase lags, have been neglected. This is justified because of the small mag-

nitude of control and propellant frequencies.

The accelerometer is described by the equation

_. 2_
a .... T

+- A+A = + )¢o 1 1 - Xaq_ (rlvYva g_vYva
a a iv

(75)

Here c0 is the natural circular frequency of the accelerometer, _ its damping factor,

and x a l_ts location. The displacement, Y , of the v{h bending mo_e at the acceler-
• va

ometer location will be setequalto zero If a rigid space vehicle is considered. For an

ideal accelerometer it is w a >> 1 and for a rigid space vehicle, the equation of the ac-

celerometer is simplified to

A. = _" '" gq_ (76)1 - Xa_ - "

B. STABILITY BOUNDARIES OF A SPACE VEHICLE WITH A SIMPLE CON"

TROL SYSTEM

To obtain the main results of the influence of the propellant sloshing on the

stability with minimum numerical effort, we will first treat the equations of motion and

the propellant as free to oscillate in one tank only. This is justified in many vehicles,

since the propellant masses in the other tanks are sometimes considerably smaller. It

is also justified in the same way for the Saturn vehicle whose booster tanks consist of

many containers with smaller diameters. Here, the sum of these sloshing masses is

relatively below the one of the large second stage tank. Sometimes for tanks with

lighter propellant (such as liquid hydrogen) whose density is only a fraction of that of

liquid oxygen, its modal mass, compared with the heavy propellant, can be neglected.

Furthermore, we will consider the space vehicle as rigid (_?v = 0). If one introduces

the value _?, = 0 into equations 70, 71, 72, 74 and 75 and chooses only one equation,72,

we obtain th_ equations of motion of a rigid space vehicle with additional control by an

accelerometer. With the usual assumption for solution of the form eSWc t, where s is

the complex frequency s = _ + iw, the differential equations are transformed into
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homogeneous algebraic equations.

Y

o
S2052 -g _ + S05

c 2 2 cfl

gx E
0 S205 2 _ (a +a $05 )

+ 2k 2 o 1 c

Ys

_S205 2
C

_ tt (Xs052cS2+g)k 2

k

2

kx E

2k2

A°

1

S2052 0)2 s2+g) _02 $2"_205 05 7 S+¢02 0
c -(Xs c c c S S S

S205 2 2_a05cS
_S205 2 C

C ( X 052 s2+g) 0 052 + --05 +I
a c a a

=0

(77)

Here, X = gg, and # = m /m is the ratio of the sloshing mass in the container to the

total mass Of the vehicle. For nontrivial solutions, the coefficient determinant 77 with

which we obtain the characteristic polynomial in s must vanish.

6

B.s i =0.
1

i=O

The coefficients, B i, are represented as polynomials of Is

B 6 =kit + k18_2s

B 5 = kl3 + 2k14Tffkis_s + kt6_2s

B 4 = k 9 + 2ki07 s +kll} s + k12}2s

and Ts and are

(Ts)

B 3=k 6+ 2k77 s +ks_ s

B 2 =k 3 +2k4T s +ks_ s

B i = kI + 2k2Ts

B o = k o .

Here the location of the modal mass, Is = xs/k, (with respect to the center of gravity)

and the damping factor, ",Ts, are extracted since they are the ones with which the sta-

bility of the vehicle can be influenced. The representation of the stability boundaries
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will be in these coordinates. It presents not only the magnitude of the required damping
in the tanks, but also its location. The abbreviations kj (j = 0, 1, 2 .... 18) depend on the
frequency and damping factors, and gain values of the control system, as well as on the

mass ri_tio, #, and the vibrational characteristics of the accelerometer. With the no-

tations _c as the damping factor of the control system, coc as the circular frequency of

the control system, ¢o2c = o:20/( 1-_ - XxEXa/2k 2) and w as the circular frequency of
OO

the control system without accelerometer (¢02co=gX E ao/2k2 ) and _E XE/k' _a = xa/k

as the distance with respect to the radius of gyration, and v s = _Os/_Oc, v a = COa/COc as

the ratios of the Eigen frequencies and the value A = 1 - _ (1 + _E _a )

the coefficients kj are with

2 _cao gxEa 1 X

a 1= _°e , 2k 2 - 2 _c _°c (1 -_- --2 XE Xa ) (79)

ko=A[ t'2+s ao_2ptA

_a

kl = 2A(_:c+--v ) [2ao_ E
a

k 3 = A a (Ua + 4_:c_:a) (a0_E

_a
k 4 = 2v A(_:c+--), k 5 = pA

s v a ao_ E

+ v 2 ]; k 2 =Av
S S

Vs2 . _4/_g cA
= +A "_ _2 .2

k 6 2 _av---a _ao_EVa

S -- ,

V 2

k9 _ s X A(1-_)
v 2 2 #+ v2
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+2

S
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S
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S
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a

._ =_/2
kly = v2 , k18 v2

_t a

(80)

45



The parameters are as follows:

a. # = ms/m = ratio of modal mass of liquid over total mass of space
vehicles

b. _c = control damping factor

c. v s = COs/C0 = frequency ratio of undamped propellant frequencyto un-
damped control frequency c

d. 7s = damping factor of propellant

e. v = Co /_0 = frequency ratio of undamped accelerometer frequency to
a c

undamped control frequency.

f" _a = damping factor of accelerometer

g. k = gg2 = product of longitudinal accelerometer of the vehicle and gain
value of the accelerometer

h. _ = x /k = ratio of the coordinate of the accelerometer location to
a a

radius of gyration of the space vehicle

i. _ = x /k = ratio of the coordinate of the location of the modal mass of
S S

the propellant to radius of gyration of the space vehicle, and

j. a = gain value of the attitude control system.
O

The stability boundaries are characterized by the roots s of which at least for one

the real part will be zero, while the others are stable roots. This is with Hurwitz

theorem for a stability polynomial of the nth degree

B =0, H =0
n n-l

where Hn_ i represents the Hurwitz determinant of the form

:BI B3 B5 .........

Bo B2 B4 .........

0 B i B 3 .........

0 B 0 B 2 .........

H
n-i (n-l) lines and columns
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Representing the stability boundaries in the (_s' 7s)- plane, the Hurwitz determinant
H 5 = 0 results in

5

j=O_ Cj(_s) Tsj = O, (81)

where the functions C. (_) are polynomials in _ . C (_) = 0 is the stability boundary
S S O S

for the undamped liquid. It represents the intersection points with the _ -axis. For

all points (} ,7 ) above the stabilityboundary, one obtains stability. _ecause of B =
S n

0, the stability is interrupted at the leftand at the right. This means that only within

these boundaries stabilityis guaranteed. From B 6 = 0 it is recognized that the corre-

sponding stabilityboundaries to the right and leftare given in the form of straight lines

perpendicular to the }s-axis, It is

-k17_S 4. -- -- 4-= kl 8 -
(82)

=7 =0
For most vehicles, these boundaries play no practical role. Substitution of }s ins_ableinto the Hurwitz determinants detdrmines whether the origin is in the stable or

region. A necessary and sufficient condition for stability is [ 15] :

a. The coefficients

B n, Bn_ I, Bn_ 3

BI, B 0 > 0 for even n

> 0

B 0> 0for oddn

b. The Hurwitz determinant

Hn_ I, Hn_ 3

H>0 if nis even
3

> 0

H2>0 if n is odd

In the numerical evaluation, the distance of the swivel point from the center of

gravity of the vehicle was chosen, x E = 12.5-meters and the radius of gyration k = 12.5
meters. The total length of the space vehicle is 56.5-meters. If an accelerometer was

used for additional control its location was at x a = -6 meters (in :front of the center of
gravity ).
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i. Rigid Space Vehicle Without Accelerometer Control. Using control with-

out an accelerometer ( X = 0) (a simple attitude control system) results in a stability

polynomial of fourth degree. The coefficients Bj would be obtained from (77) and (80)

if one introduces w a -- _ and X = 0(((_= B 5 = 0), the stability boundaries due to B n =0

again are straight lines, _ s = _- -_Z(1-p) . The stability boundary from the Hurwitz

determinantHn_ l =0 (here H 3=0orRl B 2 B 3 =B 2 B 2 +B 2 B4) is

(KI+K2__+K3} 2 )+2_/ (K4+Ks} +K6_ 2 ) +472 s(KT+KS_s+Kg_2s ) +873s = 0,
S S S S

(83)

where

K 1 = klk3k 6 - k2k9 - k0 k2

K 2 = k:tksk _ + klk3k 8 - 2k0k6k 8 - k_kl0

K 3 = klksk 8 - k0 k2 - k2kll

K 4 = ktk4k 6 + k2k3k 6 + kik3k 9 - 2kok6k 7 - 2klk2k 9

K 5 = k2ksk6 + klksk Y + klk4k 8 + k2kak 8 - 2koklk 8 - 2klk2klo

K 6 = k2ksk 8 - 2klk2kll

K7 = k2k4k6 + klk4k7 + k2kak7 - kok2 - k_k9

K s = k2ksk 7 + k2k4k8 - k_klo

K 9 = k2kll

Klo = k2k4kll.

The points of intersection of this stability boundary with the _s- axis are obtained by

setting Ts = 0 and solving the quadratic equation in

2 ----0,
K i + K2} s + K3_ s

The roots

_2=I _d [ (l-/_)/aoV2 s,

give a first indication for the critical area. Here i/a v 2 is considered to be of small
o _f the control frequency is farmagnitude. This assumption is satisfied in most cases

enough away from the Eigen frequency of the liquid. Therefore, the result expresses

that the stability boundary for small values of i/aoV2s intersects the _s - axis in the

vicinity of the center of gravity (origin) and the instantaneous center of rotation _d=Xd/k.
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One can see that }2 becomes, due to the factor of 1-,, sensitive to changes of

l/aoV2s . This indicates that for decreasing gain values, ao, the intersection point shifts

toward the tail of the vehicle. The same behavior occurs if v s = WS/Wc decreases. This
means that, for decreasing Eigen frequency of the liquid or increasing control frequency,

damping must be applied in the aft section of the space vehicle. Figure 31 indicates that

the danger zone for instability of the vehicle is located approximately between the center

of gravity and the center of instantaneous rotation. In this zone the propellant must be

more or less damped, depending on the magnitude of the modal mass of the liquid. For

increasing modal mass, not only more damping is needed in the danger zone, but also

more damping is required to maintain stability. This is most unfavorable if the control

frequency is below the Eigen frequency of the propellant, that is, if v s < 1.0.For Vs> 2,

the wall friction ( 7s = 0.01)is already sufficient to guarantee stability.

The change of the control damping _c indicates that, for increasing subcritical

damping _c < l, the stability in the danger zone will be diminished while, for increased

supercritical damping _c > 1, the stability is enhanced. This means that less dampingis

necessary in the container to maintain stability in the case _c>l. No additional baffles are
required inthe danger zone if the mass ratio , = 0. l, and the control damping _ -< 0.5

or _c - 2.0. This means that, for these values and the parameters v s = 2.5 andCao = 3.5,

the wall friction in the container is sufficient to maintain stability.

Another important question of great interest for the design of a large space

vehicle is the choice of the form of the propellant containers. As seen from Sections

II and III, the tank geometry plays an important role for the modal masses and the

natural frequencies of the propellant. Containers with large diameters exhibit small

natural frequencies which are often too close to the control frequency. Of course, the

magnitude of the modal mass magnifies considerably this unfavorable effect upon the

stability. Clustering of numerous smaller containers not only increases the natural

frequencies of the propellant (due to smaller diameters), but also reduces the modal

masses which is a much more important effect. In addition to weight saving and the

slight increase of the natural frequencies, subdivision of tanks by sector walls has the

advantage of distributing the modal masses to different vibration modes of the liquid.

To summarize: with increasing mass, stability decreases. The influence of the Eigen

frequency change of the propellant with fixed modal mass is such that a decrease of the

natural frequency increases the danger zone toward the end of the vehicle and requires

more local damping in the propellant. With increasing natural frequency of the liquid,

the influence of the propellant sloshing on the stability of the vehicle diminishes more

and more. Wall friction is already sufficient to maintain stability.

The gain value, ao, of the attitude control system shows, for decreasing mag-

nitude, a decrease of stability in addition to a small enlargement of the danger zone
toward the end of the vehicle.
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2. Rigid Space Vehicle With Ideal Accelerometer Control. Introducing into

the control system an additional control element in the form of an ideal accelerometer

( Wa >>C_c) ' proper choi_ce of the gain value, g2, which deter:mines the influence of the
accelerometer in the control system, can minimize the danger zone. This indicates

that the possibility of an instability due to the propellant sloshing in a container can be

considerably diminished (Fig. 32). Because of Va>> i, the coefficients of the stability

polynomial are B 6 = B 5 = 0, and one obtains again a stability polynomial of fourth de-

gree. The same formulas are valid as in the previous case except that in the values,

kj, the appropriate terms with k have to be considered. The boundaries B 4 = 0 are

again straight lines,

i /_X (_a) 2 k2((E+_.a)_16# _ _/__k -- k (i-#) _a_E
- 4 2(x_2) 2 '

(84)

which are parallel to the 7s-aXis. For values, k = gg2 < I, the danger zone is located
approximately behind the center of instantaneous rotation and shifts with decreasing gain

value g2 toward a zone between the center of gravity and center of instantaneous rotation.

The stability decreases, which means more damping in the tank is necessary for in-

creasing X > i. This means that, for stronger influence of the accelerometer in the

control system, the danger zone shifts in front of the center of instantaneous rotation

and increases with increasing gain value toward the nose of the vehicle. For propellant

containers in this location, strong damping must be applied to obtain stability. For

values, k = i. 5, the vehicleis instable if the tank with 10 per cent slosh mass is lo-

cated in front of the center of instantaneous rotation, and if no additional baffles are

applied. For containers behind the center of instantaneous rotation, the vehicle is

stable. Furthermore, one recognizes that X = i. 0 represents the most favorable gain

value. In this case the danger zone shrinks to a small region around the center of in-

stantaneous rotation.

The change of the other parameters, such as the slosh mass ratio p, the fre-

quency ratio Vs = °_s/C°c' the control system damping _c, as well as the gain value a o
of the attitude system, exhibits the same influence as the previous case. An enlarge-

ment of the danger zone toward the end of the vehicle occurs for large control frequen-

cies and also for small propellant frequencies (v s < i), even in the most favorable case

k = i:_D.rThe addition of an accelerometer introduces another important parameter: its

location _a" For k = i, the most favorable case for an ideal accelerometer, the in-
fluence of its location upon stability of the space vehicle is unimportant. For other

values g2, the location of the accelerometer has considerable influence upon stability.

The strong effect of the accelerometer in the control system ( X > i. 5) exhibits strong

instability if the container is located behind the center of instantaneous rotation with the

accelerometer being in front of the center of gravity. Propellant sloshing in those tanks
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located in front of the center of instantaneous rotation will make the vehicle instable
if the accelerometer is in front of the center of gravity. For decreasing values g2<i/g,
the stability behavior of the vehicle approaches that of a rigid vehicle without additional
accelerometer control. These results are too optimistic since every accelerometer
has its own vibrational characteristics which must be considered.

3. Rigid Space Vehicle With Real Accelerometer Control. The dynamic

behavior of an accelerometer, and its natural frequency and damping factor _a' have a
non-negligible influence upon the overall stability of the vehicle. From the results of

equations 78 and 80, it is recognized that the stability polynomial is of sixth degree.

Therefore, the stability boundaries are given by H 5 = 0, and B 6 = 0 (equations 81 and 82).

The main influence arises from the natural frequency of the accelerometer. In

the numerical evaluation, two circular frequencies Wa = 55;12 rad/see are considered

for the accelerometer. Figure 33 indicates that, for decreasing accelerometer frequency

(with a damping factor, _a J-2/2 ) the danger zone increases from the center of in-

stantaneous rotation toward the'end of the vehicle. The influence of increasing liquid

mass has the same effect as previously with the exception that it is very much amplified

for small Eigen frequencies of the accelerometer; a large amount of damping is required

in the container in order to obtain stability of the space vehicle. For the natural fre-

quency of the accelerometer of Wa 55 rad/sec, wall friction is already sufficient to
maintain stability. For small natural frequencies of the accelerometer, propellant
sloshing is even excited. This means that the situation is more unfavorable with an

accelerometer than in the case without one. The damping required in such a case would

be about three to four times as much as in the case without additional accelerome ter

control. This indicates that the natural frequency of the accelerometer should be chosen

as large as possible. To recognize the influence of the accelerometer characteristics,

we consider the effect of the changes of the Eigen frequency, 0_a, the damping factor,

_a' and the coordinate of location, Xa, upon the stability of the space vehicle. For in-

creasing natural frequency of the accelerometer Wa < Ws, an increase of the danger zone

is obtained, and more damping is required in the container to maintain stability. Above

the natural frequency of the propellant, a decrease of the danger zone and enhanced

stability can be observed. This means that less damping is required to maintain stabil-

ity. The larger the frequency ratio Va/V s = a)a/a)s, the less damping is required in the

continuously decreasing danger zone. The influence of the frequency, Wa and the damp-

ing factor, _a' of the accelerometer can be seen in Figure 34. The increase of [a en-
larges the danger zone and requires more damping in the propellant container. This

effect is more pronounced the smaller the Eigen frequency of the accelerometer. From

a damping factor _a or greater, which is about twice the critical damping, one recognizes,

in the case Wa = 12 rad/sec, that a further increase of the damping factor decreases the

danger zone slightly from the back and slightly enhances the stability. A very important

parameter in the design of a control system of a space vehicle is the location, _a, of an
additional control element in the form of an accelerometer. The influence of this value

can be seen in Figure 35. An accelerometer location behind the center of gravity of the
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vehicle must be avoided. Shifting the accelerometer toward the nose of the vehicle en-
hances the stability. An increase of the control frequency _c (Fig' 36) below the
natural frequency of the propellant (v s > i) increases the danger zone toward the tail
of the vehicle. For _a = 55 rad/sec, the required damping in the liquid for maintaining
stability of the vehicle is relatively small ( 7s = 0.005 and less). The influence of the
control damping _c is given by the fact that, for increasing subcritical control damping
_c < i, the danger zone decreases and the stability increases, while for supercritical
damping _c > i, the stability becomes more unfavorable (Fig. 37). The influence of the
propellant frequency being below the control frequency indicates again the enlarged
danger zone which stretches nearly from the center of instantaneous rotation toward the
end of the vehicle. Increasing propellant frequency leads to a decreasing danger zone and
less required damping. Approaching the Eigen frequency of the accelerometer makes
the vehicle more unstable and increases the danger zone toward the end of the vehicle.
The gain value, ao, has only small influence upon the stability. Its gain growth in-
creases stability slightly and decreases the danger zone some. Of important influence
upon stability is the gain value, g2, of the accelerometer because it presents the strength
of the accelerometer in the control system. Figure 38 exhibits this influence for two
accelerometer frequencies. For an Eigen frequency of the accelerometer of _a= 55
rad/sec, one recognized similar behavior as in the ideal accelerometer case. For
values of k = i. 5, an increase of k = gg2exhibits an increase in stability and decrease
of the danger zone between the center of instantaneous rotation and the center of gravity
of the vehicle. For further increase of X, the danger zone shifts in front of the center
of instantaneous rotation. With increasing X, more damping is required in the propel-
lant container in that zone to maintain stability. For an accelerometer with small Eigen
frequency, the situation is quite different. For increasing gain value, g2, the stability
constantly decreases. Here, the influence of the accelerometer favors instability. It
not only increases the danger zone toward the end of the vehicle, but it also requires
considerably more damping in the tank. It even requires more damping as in the case
k = 0 (without accelerometer control). From this one can again conclude that large
accelerometer frequency is required to stabilize the vehicle with respect to propellant
sloshing in the tank. The conclusion can also be made that the danger zone is located
between the center of instantaneous rotation and the center of gravity, and that it can
be diminished by an additional control element in the form of an accelerometer whose
Eigen frequency and location have to be properly chosen. These results are valid only
for the rigid vehicle, in which the sloshing propellant mass in one container is much
larger than that in the other tanks. With more than one sloshing mass of equal magni-
tude, the results will probably look different. Furthermore, it has to be mentioned that
the bending vibration of the vehicle has an effect on the propellant sloshing as well as on
the choice of the accelerometer characteristics and its location. If the control freqency
and the first bending frequency are sufficiently separated from each other, then the lo-
cation of an accelerometer requires negative displacement of the bending modes if the
bending rhodesare normalized at the tail of the vehicle. This indicates, that, for the
control of the first two bending modes, an approximate location of the accelerometer in
front of the center of gravity is appropriate. This location would also be favorable from
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the standpoint of propellant sloshing. From the point of view of rigid body control
which restricts the gain values to certain values (Fig. 39), care must be taken.

C. STABILITY BOUNDARIES FOR SPACE VEHICLES WITH TWO CONTAINERS
AND SIMPLE CONTROL SYSTEM OR QUARTER TANK ARRANGEMENT

Considering a rigid space vehicle with a simple control system of the form
fl = a o q_ + a_ _ and the liquid in two tanks free to oscillate, one has to substitute into
the equations 70, 71, and 72 for v = 0 and X = 1 and 2. Introducing again into the thus

obtained differential equations the time dependency, eSWct, one obtains for nontrivial

solutions the determinant:

S2_2 C -g- 2_ (ao+alWcS) _1a)2C s2

0 S2¢0 2 + gxE
c _ (ao+alSWc) _ (XlW2cS2+g)

k 2

S2¢0 2 _ (X2a)2s2+g)c 0

#2a)2c s2

_ _2_k2 (x2W2cS2+g)

0

0_ 2cS2+2"Y2_2a) C S+_ I

=0.

(85)

Here Pl = ml/m and u2 = m2/m are the modal masses in the two containers or the first

two modal masses in the quarter tank arrangement. The evaluation of the above de-

terminant results in a stability polynomial of the sixth degree. To represent the sta-

bility boundaries in the two-dimensional case, the damping factors in the two containers

are set to be. equal (72 = 72 = _/S ) ' Furthermore, one chooses the distance of the rear

container (1) to the front container (2) to be of value _. Therefore, it is x_= x s,

x 2 = Xs+ _. The stability boundaries again are obtained from H 5 = 0, B 6 = 0. The last

condition again represents, in the (_s - Ts ) - plane, parallel straight lines to the _/s -

axis which in most cases have no practical meaning. It is when _ = _/k

_1i2 =

The main purpose of this investigation is to treat two circular cylindrical containers in

tandem arrangement with the modal slosh masses being considered approximately equal.

Figure 40 gives the results for two containers of equal volume and with a modal mass

distance of 4.2-meters. The danger zone as a whole shifts slightly toward the end of the

vehicle and the required damping in the containers is approximately the same as that of

a vehicle with one container with double the modal slosh mass. The results of the
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change of parameters are similar to those in the stability investigation with one propel-
lant container. Enlarging the distance between the two propellant containers, however,
one recognizes that the danger zone in which damping has to be provided will shift with
nearly unchanged magnitude toward the tail of the vehicle. Furthermore, it indicates
that a little less local damping is required. This is an important result because it ex-
presses that - for a multi-stage space vehicle in which the forward modal mass location
is constant during first stage fligh t time and the other mass location is shifting away
from this - the entire rear part of the vehicle must be provided with appropriate baffles.

With clustered circular cylindrical containers whose modal masses are at the
same height, a considerable reduction of modal propellant masses is obtained as com-
pared to a single circular cylindrical container of equal volume. Furthermore, the
natural frequency of the propellant is slightly increased by clustering tanks. For p
containers, the natural frequency of the liquid is proportional to the fourth root of the
number of containers.

(P)

f ._- / tanh" (c_'P-(h/a))
n 4 " it __

f(i) = _P4 _anh_(enh/a)

n

(86)

The total mass of the propellant reduces proportionally to the reciprocal value of the

square root of the number of containers:

(P) tanh ( Cn_ h/a)m
s 1

(i) __p tanh (e h/a)m n
S

(87)

In clustered containers a smaller total mass of the liquid oscillates with higher

frequency; that is, /_ is smaller and cos is a little larger, both enhancing stability. The

influence of the various parameters is the same as in the case of one container with a

simple control system. Because of structural reasons and due to the increased weight

of the containers, the clustering of propellant containers has some disadvantages.

Change in tank geometry can minimize the influence of propellant sloshing upon stability;

that is, by subdividing the tanks, the magnitude of the modal slosh masses can be redu-

ced and the slosh frequencies can be increased. We consider two possibilities for the

subdivision of the circular cylindrical containers. For example, one would expect

that by properly using a concentric wall to subdivide a tank, the phase relation of the

modal masses in the inner and outer tank could be tuned to minimize the effect of pro-

pellant sloshing upon stability. To accomplish this, the magnitude of modal masses in

the inner tank and in the annular ring tank should be approximately equal. At a diameter

ratio of k = b/a _ 0.77, the modal masses of the two containers are approximately

equal. Unfortunately, their frequencies are not very favorable. Therefore, one does

not obtain the optimal cancellation of the effect of these two propellant motions. At the
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diameter ratio of k = 0.5 the phases are very favorable; however, the modal masses

working against each other are only of the ratio 1:5. For the diameter ratios k = 0.3,

0.5 and 0.7, the required damping in the containers for maintaining the stability is ap-

proximately i2:9.8. The behavior of the various parameters is similar to the case of one

container. The Qther possibility of reducing the influence of" propellant sloshing on the

stability of the space vehicle is to subdivide the tanks with radial walls. The most im-

portant form of a subdivision by sector walls is the four-quarter tank arrangement. In

this tank arrangement, the second modal mass of the propellant also must be considered

in the treatme.nt of stability. This tank arrangement has the great advantage that only

about one-third of the propellant mass oscillates. The second modal mass in the four-

quarter tank arrangement is about 43 per cent of that of the first. Therefore, it must

be considered in stability investigations. Compared with a space vehicle with circular

cylindrical container, a four-quarter tank arrangement requires only half the damping.

The overall stability is, therefore, considerably enhanced. The results for the four-

quarter tank arrangement can be seen in Figures 4i and 42. For increasing modal

mass, more damping is required. Again, the danger zone is located between the center

of gravity and the center of instantaneous rotation. Increase of subcritical control

damping decreases stability while the increase of supercritical damping increases sta-

bility. For increasing control frequency, the danger zone enlarges toward the end of

the space vehicle, and a larger local damping is required to maintain stability. The

influence of the Eigen frequency of the propellant is similar to the case Of a space ve-

hicle with one propellant container. If the natural frequencies of the propellant are

below control frequency, the propellant has to be strongly damped in the enlarged danger

zone. Small gain values, ao, require more baffling in an enlarged danger zone.

SECTION V. CONCLUSION

In the stability consideration of large liquid propelled space vehicles, the

influence of propellant sloshing has to be considered in the dynamic treatment. To

eliminate instability caused by propellant oscillations, several possibilities can be ap-

plied: first, subdivision of the propellant containers in which the oscillating liquid

masses are decreased and distributed to different modes, thereby increasing the Eigen

frequency of the propellant ; second, proper location of the propellant container; third,

appropriate choice of the control system, proper choice of gain values and additional

control elements; and fourth, introduction of baffles into the liquid to disturb the flow

field.

For the determination of the flow field of the propellant in a circular cylindrical

ring sector tank, the linearized equations and boundary conditions are treated with the

liquid of a free fluid surface. The liquid has been considered incompressible, non-

viscous, and irrotational.

The behavior of the liquid in circular cylindrical sector tank containers with

circular cross section, annular cross section or one-quarter circular cross section can
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be obtained by limit considerations. The natural frequencies of the liquid are indirectly
proportional to the square root of the tank diameter and decrease with increasing tank
diameter. Furthermore, they increase with the longitudinal acceleration of the space
vehicle. The influence upon the Eigen frequencies of the liquid by the tank geometry is
exhibited by the value _mn' The Eigen values are influenced less by concentric walls
but exhibit quite a change if radial walls are introduced in a tank. The influence of the
•liquid height upon the Eigen fre_luencies is only noticeable if the liquid height is less than
the tank radius. For decreasing liquid heights the natural frequency of the propellant
tends toward zero. As in a mechanical vibration system, the magnitude of the surface
displacement, the forces and moments of the liquid are increasing with increasing ex-
citing frequency before the first resonance. For a frequency band around the Eigen
frequencies of the propellant, violent liquid motion takes place in the container. Behind
the resonances the magnification functions decrease again. To introduce a damping
into the results of an ideal flow theory a mechanical model (spring-mass system) is de-
rived which describes :the motion of the propellant for the stability investigations. By
introduction of each vibration mode as an independent degree of freedom, and by com-
parison of the results of the ideal fluid theory with those of the mechanical model, the
spring constants as well as the magnitude and location of the masses of the"mechanical
model are obtained. Magnitude and location of the masses depend on the container geo-
metry and the liquid height; therefore, the influence of the liquid propellant upon the
stability of a space vehicle has been affected by the container geometry. Since the
liquid particularly oscillates only in the vicinity of the free fluid surface, the absolute
values of the masses for fluid heights larger than the tank diameter are inde-
pendent of the tank filling. With increasing Eigen frequency the disturbances shift
further toward the free fluid surface. The mass ratio of the modal mass to the total
liquid mass increases with decreasing fluid height. This ratio indicates that in a long
container for which the ratio of the fluid height to the tank diameter is large, only a
small amount of the total liquid participates in the propellant sloshing. In short con-
tainers a large amount of propellant participates in these vibrations. For decreasing
liquid heights the location of the modal mass shifts into the immediate vicinity of the
center of gravity of the liquid. The nonvibrating mass is located close to the center of
gravity of the liquid. In containers of symmetrical circular cross section, the first
modal mass represents the main part of the oscillating propellant. The second modal
mas_, in the case of a container of circular or annular cross section, represents only
3 per cent, respectively, 12 per cent of the first modal mass. This indicates that for
stability investigations these and higher modal masses can be neglected. For a four-
quarter tank arrangement the mass of the second mode has to be considered since it
represents still 43 per cent of the first modal mass. A decrease of the modal masses
can, obviously be performed by subdivicling the container using radial and concentric
walls. It has been shown that the subdivision by radial walls is much more effective.
In the case of four-quarter containers the vibrating liquid mass is reduced to more
than half of that of a cylindrical: container of circular cross section. Another advantage
is exhibited by the fact that the vibrating: masses are distributed to various vibrating
modes andthe Eigen frequency is slightly increased.
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The nonlinear damping of the liquid is introduced into the forced vibrations as
equivalent linear damping, which is determined by experiments.

For the determination of the magnitude and location of the required damping in
the containers, one treats the stability of the vehicle by considering the equations of
motion for translation, pitching about the center of gravity of the vehicle, the oscil-
lating propellant and the control system. With the usual solution in the form of eS_)ct,
the characteristic polynomial is obtained and is treated with the Hurwitz criterion. Here
the stability boundaries are best determined in terms of the location of the modal mass-
es and the damping factor of the propellant liquid. Not only the magnitude of the damp-
ing, but also its location, is obtained.

The results of the investigation of a rigid space vehicle with a simple control
systemand one propellant container in which the liquid is considered to oscillate, show
that along the vehicle a danger zone for instabilities appears. This is located between
the center of gravity and the center of instantaneous rotation. In this location the pro-
pellant must be more or less damped according to the magnitude of the modal mass of
the propellant. To avoid this, the container with large modal mass should be located
behind the center of gravity. If the natural frequencies of the propellant are in the
proximity of the control frequency, which is sometimes the Easewith large containers,
then the danger zone increases further behind the center of gravity toward the end of
the vehicle. Therefore, the Eigen frequencies of the propellant should be as far above
the control frequency as possible. The change of the control system damping exhibits,
with increasing subcritical damping, a decrease in stability, and with increasing super-
critical damping, enhanced stability in the danger zone. Decrease of the attitude con-
trol value, ao, results in a small decrease in stability.

The introduction of an accelerometer as an additional control element into the
control system can enhance the stability considerably if the vibrational characteristics,
the location of the accelerometer, and its gain value are chosen appropriately.

Here the location, the Eigen frequency, and the gain value of the accelerometer
play an important role. With properly chosen accelerometer characteristics, the danger
zone can be reduced to a small region about the center of instantaneous rotation. If the
gain value of the accelerometer is smaller, the danger zone expands into the direction
of the center of gravity. If it is too large, the danger zone shifts in front of the center
of instantaneous rotation and requires comparatively large damping in the propellant
containers. Here the accelerometer is located in front of the center of gravity and its
natural frequency is appropriately separated from the control frequency. If the latter
is not the case, the propellant sloshing is excited and strong damping is required in the
tanks. The mounting of an accelerometer behind the center of gravity must be avoided.
Increasing damping factor of the accelerometer requires more damping in the contain-
ers located in the danger zone.
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With two containers in the tandem tank arrangement, the danger zone shifts with
increasing distance of the modal masses toward the end of the space vehicle. With in-
creasing flight time, the distance of the modal masses increases (which takes place
during the draining of the first stage containers). Therefore, the total rear part of the
vehicle has to be provided with appropriate damping in order to maintain stability.
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APPENDIX

A. ROOTS OF CERTAIN BESSEL FUNCTIONS.

For the previous results, the roots of

=
m

2_

J, Y,m m

2_ 2_

J' (k_) Y' (k_)
m m

2_ 2_

=0

for m = 0, I, 2 .... and arbitrary 0 <_ k < I. must be known. For most of these roots

J. McMahon represents an asymptotic expansion [ 16].

The lowest root, however, was not known, until H. Buchholz pointed out its existence

[17]. In Reference [18] D. Kirkman represents the roots of the above determinant

for m/2a = 0, I, 2, 3 and 4. In the numerical evaluation of fluid oscillations in cir-

cular cylindrical containers one needs toknowthe roots of J' (¢) = 0 and A (4) = 0m m

2a 2a

for various diameter ratios 0 <_ k < i. For At(_) = 0 the roots have been numerically

determined and are represented for 0 <k< 0.9in steps of Ak= 0. i [I0]. The roots of

J' (_) = 0 which occur in the case of a container of circular quarter cross sections
2m .

are green in Table 4.

1. The Representation of Various Functions f(r) in Bessel Series:

The determinant C is
m/2a

C (X r) =
m mn

2a

J
m

2_

¢]'T

m

2_

(X r) Y (X r)
mn m mn

2_

(X a) Y' (X a)
mn m mn

2_

i01



Its derivative

(x
__ mn

2d_

r)=

J' (_ r) Y' (l
m mn m mn
2c_ 2a

J, a) Y'm (kmn m (kmn

2a 2_

r)

a)

is equal to zero for r = a and for r = b.

because of the roots __mn = kmn a.

For r = a it vanishes identically and for r = b

A function f(r) being piecewise regular in b < r < a, is satisfying the Dirichlet

Conditions, can be expanded in a Bessel-Fourier series

¢O

f(r) = _ b
mn

n=O

C (k r) m = 0, i, 2...
m mn

2c_

The unknown coefficients of the expansion are obtained by multiplying both sides

of this equation with r C (k r) and integrating from r = b to r = a, (k 4: k ).
m mp mp mn
2_

With the integral of Lommel the integral of the right hand" side becomes

(
fr c (x r) C (k r) dr = r 4

m mn In mp (_2 _ k2 ) l C (k r) C' (k
2a 2o_ mn mp [ mp m mn _in_ mp2a 2a

r)

- k C (k r) C' (X r)l
mn m__ mp m mn

2a 2_

(Bt)

i02



It vanishes, if one of the following conditions are satisfied:

l) C (X a) =C (X a) =C (k b) =C (X b) = 0
m mn m mp m mn m mp
2a 2a 2a 2a

2) C' (X a) =C' (k a) =C' (X b) =C' (X b) = 0
m mn m mp m mn m mp

2o_ 2oz 2oz 2oz

3) X C (k a) C' (k a) =k C (k a) C' (X
mp m mn m mp mn rn mp m mn

2a 2c_ 2a 2oz

a)

X C (k b) C' (X b) =X C (k b) C' (X
mp m__ mn m_ mp mn m mp m mn

2a 2a 2a 2a

b)

In the here treated fluid oscillations the second condition is satisfied, since X a andmn

k b are roots of the equation A = 0. Therefore those terms vanish for which k
mn m mn

X (n + p) and the coefficients of the expansion are:
mp

a

bf r f(r) Cmg--c_(Xmn r) dr
b = (B2)

mn
a

bf rC 2 (X r) drm mn

2a

For p = n the equation (Bi) assumes an undeterminant form of which the value can be

obtained either by Taylor series expansion or the rule of L'Hospital and the Bessel

differential equation for C
m/2_"

r2_k I m2 ] }f r C 2 (X r) dr =_ C (X r) 1 - X2 r2 +C _2 (X rm mn 2 mn 4 a 2 1Tt mn
2c_ _ 2c_ mn 2c_
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and it is

a

f r C 2 (km mn

b

a 2

r) dr = _- I m2](k a) - k2 a2 + C 2 (kmn 4 _2 m mn
mn

C (k b) i - o_2 X2 b2 + C'2 (_'mn
2 mn 4 m

mn

L 2o_ 2c_

Because of the second boundary condition this integral becomes with k mn a -- _mn

m 2

a _r) a2 4 2 C 2
r C 2 (_mn dr -- 2 _2 2 (}ran - _ ) - (km a 2 m_mn _mn

b 2_ 2_

(B3)

Here the value C (_mn) = 2/_ }mn is the Wronskian Determinant.m

2_

b of the series expansion can therefore be determined from
mn

The coefficient

b
mn

a

2 2

b
rf(r) C m (_mnr) dr

a

f-

a2 __ 4 2 m2
2 2 (_mn-4--_) -C 2L _mn m___

2_

(k _mn ) (k 2 2_mn

(B4)

The problem that remains is the solution of the integral

a

fb rf(r)C (_mn r) dr.m a
2_

Most of the integrals of the previous treatment are of the form

z K C .(z) dz.
p
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These can be obtained with the help of the Lommel function

K C v i(z)z C (z) dz= (_ + v-l) z C (z) S (z) - z S (z).
P p g-1 p-1 - Kp

The Lommel function is

SKp(z) =SKy (Z)+ 2 g-I F(K-2+_

where s
KP

F (_ +2+ i'){sin _-_ v)Jr( z )- cos _K2-----vV) Yv

is the particular solution of the nonhomogeneous Bessel equation

d2 K+I
z2 w dw +(z2_ v2,) w= z

dz 2 +z dz

and can be represented as

sKy(z) = z 'c-1

#=0

With the recursion formula

F 2 2 +

C (z) = C' (z) +-VC (z),
v-i v z v

we obtain

f zKC (z) dz= (K+v- i)zC (z)Sv v K-1 (z)l- zS (z){Cv (z) +-v C(z)}_v z v

which results for the integration from

because of

zl=_un to z 2=k_vn (z=_vnr/a)

C'v(,_vn ) =C'v(k }vn ) = 0
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in

_vn

f
k_

un

K
Z Cu(z) dz= (K+e-1) _un [SK_iu_I (_un) Cu(_en)

_l(k_ C (k_ }_ - u IS (_ Cp(_vn)
_ k S

K-Iv vn ) u vn Kv vn )

- SKv(k_vn ) Cv(k _vn)] "

We obtain

bfarK C (_vnr) dr-P a
a 2 _ C _un

K-lP-1 P
_;n K-lv-l(_vn ) 7r_vn kS (k_v n) (k

va (_vn) 2 - S (k_u n) C (k _vn (B5)
K+l KV 7r_v n _:v v

pn

The representation of the integrals can also be performed by integration of the series

expansions

f zK Cu (z) dz=Y'p(_un ) f zK Jr(z) dz- J'u(_un ) f zK Yu(z) dz.

Integrating the first integral term by term and collecting terms of J one
obtains v + 2 # + 1

f z J (z) dz= z ''/, J (z) (B6)
v F v- + +K+3 v+2#+l

/_=0 F 2 +

where Re (K + 2 #+ i) > 0 if we integrate from z = 0. The second integral is obtained

by termwise integration of the series expansion of the Bessel function of second kind.
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z K y
m

2oz

It is for (m integer)
2_

(z) dz) - -

K+I
z

m

2c_
-i

(m ,(2)2a - #- I).

m

2# -

m

#! (K + 2#- 2o_ + 1)

2z K + I _o (_I)P(2)

+ 2
#=0

m
-- +2#
2o_

p, (m +p), (in +K+2p+i)
• 2oz ' 2oz

z I
fl

l_n 2 - 2 ¢(p+l)

m
_+2#
2oz

1 m 2z K + 1 _o (-1) # (2)

+i)}
_=0 _, (m__+_) , (m )2• 2o_ " 2_ + K + 2#+ i

where ¢ (z) represents the logarithmic derivative of the gamma function

(B7)

¢ (z) =
d (In F (z))

dz

oO

iy-_

--7+(z-i) ?, (X + i) (z + X)
k=O

T is the Euler constant•
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It is:

_mn

k _mn

K K

z C (z) dz=Y' (_mn) _mnm m

2a 2a

I'm +_+

oO
m +2p+ --_+-_+

r¢_ + _-+ 3 + _)2 2]2=0
+2#+ i

K+I

- kKj (k_mn) - Jm (_mn) - -- "
m___+2p+ I2a Ta

-#- ! }mn -_ (i-kK* 2p--2-_+I)

m
m__)p= o 22P -2o_ (K + 2#+ i - 2a

K+I

2 _mn
m

co

Y.
#=0

m m9(_1) # 2/,+2-5 (t - kK+2#+-_-_ -}mn

22p+m/2a #! (#+_-_a) ! (_+K+ 2_+1) 2

7r

A=0

m +2#m___+2p 75
(-i) p k 2_ _mn

22#+m/2a m__) , m
#I (#+ 2a ' (-_+K+2#+i)

i m +i)I
+

2 /_+1 (_i) p 2p+m//2c_
in co _ in

p= 0 22#+m/2_ mp_ (_+ _-_) _

+i)

m

i i m + i)]}_ (_+ i) -_ (_+ 2_

( _mn )

(B8)
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m

If one has for f(r) = r2_ then the integral in the numerator is

m

_+2{ _ m

a m 2_

r a 2 k2_r2_ + i C (_mna) dr- 2 C
- In _mn _r _mn m

b 2o_ 2o_

and the coefficients of the expansion r m/2_

m
oO

20/

r =_ dmnCm ( _mnr)a
n--0

2_

(k _mn )}
(B9)

are

d
mn

m m

2 (m a2O_ {.____2 2c_2c_) _ _mn - k Cm
2or

m2
4 " 2 C 2

' 2" 2 (_mn-T_ 2) - m
v _mn

2_

(k _mn )}

_ m 2 ]
(k _mn ) (k 2 _2mn _--_f

(BIO)

These results were obtained from

C (z)dz=Y' (_n) S zzp+l p+lp p
f p+lJ (z) dz- J'(_ ) z Y (z) dz

v v vn v

P+I
=Y'(_ ) z J

p pn P+I
(z) - _(_vn ) z v+l Yv+l(z)

which can be expressed with the recursion formulas

z Jv+l(z) = v Jr(Z) - z J' (z)p

as

zY
p+l (z) = v Yv(Z) - z Y' (z)p

z p+l
P p+l

C (z) dz=vz C (z)-z
/2 /)
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Introducing the integral limits, we obtain with C;(_u n) = C' (,k _ ) = 0p _n

I v {Cv( _m v+l (z) dz = v _vnz C v

k_un

un ) - k v Cv(k _un)_ •

Therefore it is

u+2

a u+i r) dr - ua {Cf 2 (_r Cu(_un a _un u
b

un ) - k u C (k }un) }p
(BIt)

with which one obtains the integrals of the text:

a a

f r2C (_mnr)dr=a3N2(_mn )" frCm ' 2m-i

b 20/ b 2_

_r) dr = a2 Nl(_2m_in '(_2m-lna )"

a

f Cm
b 20/

4-2

For roll excitation we used the series expansions for (r)

integrals of the form

r) dr=aN0(_mn ).(_mn a

, )
a

a 2m- I a1-

20/ (}2 r) dr, f r3Cr C2m- i m- In 2m- 1

b b
20/ 20/

r) dr,(_2m-ln a

in which

2m-I a
a --+l

f 20/ ( r) dr, (__lr C2m-t _2m-lna . r
b

b 20/

C _I( _r) dr2m _2m-1 a

2 0/
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occur. The first two integrals can be determined with the recursion formulas

f 1-" v 1- v 1{ z 1- v -vz C (__z dz =- z C , ). =- z C'( ).z - z v C ().z.

f v+l v+l 1( v V+lC,z C (z) dz = z C z) = v z C (z) - z (z)
/_ lJ+ 1,' I_

and are with

C' l(_2m = 02m- - In )

2o_

and

C' (k _2 n ) = 02m-1 m-1

2m-1
2 m

2 _1 (2m_ a 1- a

f r C2m_l(_2m_ln a) dr-- 2
b 2 a _2m- in

2_

2

7r_2m_ in

2m-1

2o_
-k C

2m-1

2&

a 2m-i (2m-l.l 2 c_
27 +l a

f _2m r \ 2_/• r C2m-l( -ln "_) dr=
b 2

20_ _2m- en

(k _2m- ln) 1

2m-1
_+2

(B12)

2m-1

-k

C2 2o_m-___._1 (k _2 m-in I

(Bi3)
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The third and fourth integral is obtained from (BS) by substituting v = m/2 _ by

(2 m - _/2 G and K = 3 and _ = i respectively. In the denominator there appear integrals
2m-I

belonging to the series expansions (r/a) _: 2 and (r/a) ± 2 _ These are obtained with

(B3) by substituting m/2G for the values 2m- I/2G. With this one can determine the

and q_ - i n" For G = i/4there appearcoefficient g2 m- i n' h2 m- I n' 12 m- i n m

series expansions of the form

2 oo

(r) ,n = poO2
1"I-----0

r

(a)

-2 oo
r

= _ hn C2 (}2n a)
n=0

(Bi4)

oO

(a)2 = _ gn C2 (_2n r)
n=O

The numerator integral for fin is obtained by integration by parts

a
2 a 4 k 2 in kr

f r 3 in (r) C2 (_2n a ) dr =-
2

b _2n

a4C 2 (k _2n ) + _ 2
_2n

(_2n) - k 2 C 2 (k _2n)l

4 a 4

4
_2 n

_2n

/
k _2n

z C 2 (z) dz (B15)

The integral

f z C2(z) dz = Y{ (}2n) f z J2(z) dz- J_(_2n ) fz Y2(z) dz

ii2



is with

f z #+i
I Jv(Z)_yu(z)j dz

= _ (_2 _ v2)
J (z)_

f z#-I v

Y (z)J

Jv(z)_

Yv(z)J

dz+z#+1_ Jv+1(z)}
(Yv+l (z

(BI6)

and the recursion formula for J and Y
p p

= z C2(z ) _ 4
z Ij,(z) Y'(}2 ) -Yl(z) J_(f22 n n

YI(z) - z Y_(zO

(B17)

Applying the recursion formulas

zJ (z) =zJ'(z) +'vJ (z)
p-1 p p

z Y (z) =zY'(z) + v Y (z)
p-1 p p

we obtain

fz C2(z) dz =4C_(z) + Sz 7 C2(z) (BlS)

Finally the integral is

a
2 a 4 k 2 In k

2
_2n

b

32a4 I 26 _ _2n_2n

_k-2

C2(k }2n ) +
_2n

C2(k _2n) 1 •

_ k 2 C2(k _2n) I

(B19)
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The values gn and h are obtained from 12 _ and qn m in

substituted by 2 and the index 2 m - 1 is taken to be 2.

of the coefficient (Bn' hn' gn ) is

, if(2 m- 9/2 o_ is
2m-in

The integral in the denominator

r 4 2 - 4) - C_(k _2 ) (k2 2 - 42 2 2 (_2n n _2n
bfr C2(_2 n a ) dr - 2 _2n _2n

(B20)

2. Limits for k --_ 0. For the determination of the zeros of the function

Am/2a(_) = 0 for k = b/a --_ 0 we substitute m/2c_ = v for noninteger values and
g

m/2a = n for integers. The determinant is then

(_) =
J'v (_) Y'v (_)

J'v (k_) Y'v(k_)

=0

It is

J' (k _) Y' (_)

the equation from which the roots are found. For the limit k -* 0, we need the ratio of

For small x

_ -}-2X

_o k

J (x)= _ (-1) (x/2)
v _! F(v+k+i)

k=0

X

_- Sr (v + 1)

for integer and noninteger values of v. It is

-N+2X

a (x) = _ (-t)x (x/2)
-v X! F(k- v+l)

k=o

- W
X

2 F(1-,:
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From the definition of the Bessel function of second kind

J cos v 7r- J

y =
v sin v _r

and the relation of the gamma function

we obtain for Y

r(v) • F(l-v)-
sin v v

for small values x

- 2 v I'(v)
Y (x) - for v > 0

7rx

For integer indices n the Bessel function of the second kind is given by the series
expansion

ln_ 1 (n-k-i)' n-2kYn(X) =2r (T+ln2) Jn<x) -_X=0 t.' . (2)x

n+2X

_x=0 ¢ (x) + ¢ (x +n

withT=lim {1 + i 1 1
n--,¢o _ +5 + ..... +-n -ln n } _ 0. 5772 as the Euler constant.

sion ¢(k) is defined by

The expres-

k

#
#=0

_(o) = i

we obtain, because of lim [x n •For small values

X--_0

value

lnx] = 0 for n > 0 the approximated

Y (x)_
n

-2 n (n- 1).'

n
7rx

n= 1, 2, 3, .....
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With the recurrence formulas

i

J'(x) =_[Jv_i(x) - J l(x)]V V+

1

Y'(x) =[[Yv I(x) -Yv+1 (x)]y

the derivatives for small values of x are

J' (x) _ xz---- 4
v 2v+2 F(v) 1 P'-I

X 2 X
_ _-_

r (v+2 2 u F (v)

2 v-2
Y' (x)

/2 _'+1
_X

4 F(v+l) -x 2 F(v- 1)1

2 v I' (v+ 1)

/)+1
7_X

Therefore the ratio becomes

J' (x)
/)

I)
7rX

2 2/j F(p) F(v+I)

For the limit x --_ 0 (k --_ 0) we obtain

Jm/2o_(_) = 0

The roots of this equation are expressed by E
mn

the roots _}mn--_ emn. It is

This means that in the limit k -_ 0

lim {Am/2 (_)} =J' (_) andiim _mn=ek-_ 0 a m/2 a k -_0 mn
(B21)

3. Ym/2 c_ (}mn) has been taken into the integration constant Amn, Bmn.
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Therefore we have to consider the limit of

r

Cm (_mn a )

2_

Y'm (}ran)

2_

It is

r r

C (}mn a ) Y ( J'm m }tuna )" m

2_ r 2_ 2_

Y' (}mn) = Jm___(}ran a ) - y, (}ran)
m 2_ m___
2c_ 2c_

(_mn)

For the limit k---0 we obtain, because of (B21) the value

lira

k_

r)Cm (}ran a

2_

Y' ( _mn )0 m

2a

x r

=J (e
m mn

2_

This expresses that in the results of the circular cylindrical ring sector container in

the limit for the sector tank instead of C the function J has to be substituted.
m m

2o_ 2o_

From (B6) we obtain the needed values for a sector tank:

oo

m

L0 (6mn) _ _2 _ J2#+m/2_+l (emn) (Re-_ >- i) (B22)
mn #= 0

J m -_i +2#+1_

= 2m- i _ /2m-i _ f2m-i hJ2m (62m-flY"

L1(e2m-ln) 40_ e2m-ln p=O k' 4C_ +_ _4-_ +#+_ 2_ -I+2#+I

(B23)
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L2 (emn) =

F + oo

mn - p = o

(m_-_- + 2 #+ +

F +/.t+ _

J <e )
m mn

+2_+12o_

(B24)

The values f are obtained from
2m-ln

f
2m-ln

2m-I
a _+I

20_

f r J2 m- 1
O

2C_

r)( E2 _ drm lna

2m-1 a

a r
" m-i

O
2c_

r)( ¢2 - drm lna

Here it is

and

O

a a2
r j2 (p#) dr- 2

2m-1
a _+1

2ar J(p*) dr =

f (2 m - 1) 2 1
- 7 ....

2m-ln

2m-I

(2m-,)20a
2c_

2
E2m- in

j2 _ 1( 62 _2m m in )

20l

_+2

J2m i (62 1) "
m_

2C_

It is therefore

f
2m-ln

- 1_2 T£ j

m-ln 2C_ J2m- I

20_

(c )
2m-in

(B25)
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The values e in the series expansion2m-ln

Cri e2m-ln J2m 2m-ln a
n=o

20_

are

e
2m-ln

a

y rr3J2m I(62 --) dr- m-lna
O

202

a

a 2 / r j2 (6 _)
• 2m-i 2m-ln

o
202

The numerator integral is obtained from (B6) and e is therefore
2m-ln

e
2m -in

_2m--l_ _2m-i i_ 12m-i i)= 2 62m- in \_-d--_] 4. - _ +

l2m in _?_J j2 (6- 2m-I 2m-in )

20z

c_

#=0

f2'm-1 + 2#+_ J (62m_in)
_ 2m-i +2#+i

2c_

_2_-i +#_i _ f2m-i 2m- 2m-

In a quarter tank the values f and e require the integralsn n

a

r

f r 3In (r) j2{6 _) dr2n

a

[ r3 J2 (62 r 2a 4 )o _ n a ) dr- 62 J2(62 n
2n

r a 2

fa 2 ( 62 dr -- ( 6 2r J2 n a ) 2 6 2 2 n
o 2n

- 4) J_ ( 6 2 n)

(B26)
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The first integral is obtained by in_gration by parts and application of (B6)

a _ j (62n)r 4a4 2_+4
f rSln (r)J2(62n a ) dr:- 62

o 2n #=0

(B27)

The remaining integrals are obtained from (B6).

4. Some Series of the Roots of Bessel Functions. During the course of the

introduction of equivalent damping into the result of the ideal fluid theory a few formulas

had to be brought into the form of those of the mechanical model. Certain series expan-

sions of the roots of Bessel functions had been used, which will be derived here. The

expansion of r/a into a Bessel Fourier-Series was (B6)

with which we obtain for r = a

r

_o Ji (6 n a )
r= 2 F (B2S)
a /_

n=0 (6 2 - i) Ji(6 )
n n

(62 - i) - 2
n

n=o

Expansion of r 3 in a Bessel-Fourier Series in the Interval o < r < a results in
w

(B29)

r

r3- _ O_nJl(6n a )
n=o

where

O_
n

a
r

o f r4jl(6 n a ) dr

r)
r J_ ( 6n drO a
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The integral of the numerator can be obtained from (B6) if one takes K = 4 and v = 1

with the recursion formulas of the Bessel functions and J_ ( ¢ ) = 0 it is
n

0

a a5r

,f r4 Jl ( en a ) dr - e4 ( 3 62n - 8) Jl( en) •
n

(B30)

Therefore

n
=2a 3

e2 (e2 _ 1) Jl(¢ )
n n n

the series expansion of the function (r/a)3 is

3 oo

n=0

r
(3 E 2 - 8) Jl(6 --),.

n n a

e2 (¢ 2 - t) Jl(¢ )
n n n (B31)

For r = a we obtain

1=2 -8
n=O

from which we conclude that

'1

e2 (z2 - 1)
n n

oO

1

6 2 (6 2 - i)

n=o n n

i

8
(B32)

and

1 _ 3
6 2 8

n=O n
(B33)

B. EFFECTIVE MOMENT OF INERTIA OF THE LIQUID

In the description of liquid oscillations as a mechanical model, the effective

moment of the fluid in a completely filled and closed container has to be known. This

problem can be solved by oscillating the completely closed container about the coordinate
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axis. The solution is obtained from the Laplace equation with the boundary conditions

(for excitation about the y-axis)

D • i_t
m = i_O e z cos q_
Dr o

at the tank walls r = a, b

8 • i_t
,-i_@ e r cos (p

Dz o
at the tank bottom and tank top z = -h/2

z = h/2

DO
-0

raq_
at the sector wall _= 0

4_ i_t
-i_O e zsin_

rO_ o
at the sector wall q_= _.

The velocity potential is

_ (r, _o z, t) i_2 0 i_t f 2aa b sinh_c°s_)Im mn
, = - r z cos q_ + C (p _ (C1)

oe _mn cos h (K/2) m

The pressure distribution is obtained from

p=-p-_- +gp / -z+ Ooei_t (a-re°s q_

and is

[ 1-- i_t 2aa b sinh _ cos q_C(p)
p=p _20 e. _ -rzcosq_ + m mn

o _mn cos h (K/2)

"_ Pg _ _ z "_ 0 0 ei__t (a m r e°s _t_ '_

(C2)
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With this the various pressure distributions at the tank wall can be obtained. The follow-
ing represent the various moments

-- +h/2
O_ O_ a

Mx =-f' f. [aPa - bPb] z sin cP d(P dz- f f (Pu - Po ) r2 sinq_ dga dr
o -11/2 o b

h h

a +2 a +_

+ f f zpg a drdz- f f
b h =o b h

m_ m_

2 2

m

zpq_= --c_ cos adrdz

M
Y

+b/2

--f f
o -b/2

[ aP a - bPb ] zcos (p dq_ dz+

m

O_ a

flf
o b

(Pu - Po ) r2 cos q) d ga dr

a +h/2

- f f
b -h/2

Pq_ =o_--z sin oz dr dz.

They are

M
x

= - m _2 0 e (i
o

(I ,* 2 tan h (K/2).K

2 _2 _mn2 N2 (_mn)

(m 2 _2_ _2) R:

_- 4a b
+k2 ) sin2_ _ + m mn

OZ

[(_t) m --cos a- 1]

a_ (1 - k 2) _2
mn

tanh (K/2)I _ 2 m ga

JJ 3

(k +N
o

(1 - cos _) (1 + k+ k2)
(i +k)

(C3)
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and

My=-m_2Ooei_ta2 {T2 lah--12 (1+k24 - ._ 4a m bmn (-i)m sin_
+ sinc_ cos_ +

J _a(i_k 2) 2_mn

[_ 2tanh(K/2) _m _2 f_ 2 )] )_- K- 2_r2_- a 2 _mn k C m (k _mn + No (_mn

2_2_2mnN2(_mn) tanh(K/2)] t+(m27r2-_ 2) K 2mga3 sin_ (l+k+k2)"(l+k)

(C4)

For a container which is roll excited about the z-axis, the Laplace equation has to be

solved with the boundary conditions

a_
-0

8r
at the tank walls r = a, b

a_
-0

az
at the tank bottom and top z = - h/2

z = h/2

a_ - i_2gOore at the sector walls _ = o, _.rag0

The velocity potential is given in (Eq. 41) if we omit the double summation. The moment

about the z-axis is given in Table i; therefore the effective moment of inertia of the

liquid about the z-axis is

Iz eff = m a 2 f 1 +2k2
+

32_ Ic_ (i +k 2)

(2m-i) [(2m-i) 2 v2_'_2] L2m-i

1 _ 2_
-k 2o_ + m-1. +

2oz

2m - 1 )
-k-2_-

2

2m-i 2

k 2m-1_2
J

(1 - k 2)
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The first term is the moment of inertia of the rigid body and the ratio of the moment of
inertia of the liquid to that of the rigid body is

Iz eft 64

zo

2m-1 _2

m=l[: ,_1 -_ kT_----J{m-t_

k 2m- l_ 2• -k TY- j

(t m k 4) --k 2 a

(C5)

[(2m-1) 2 7r2- 4_ 2] (2m-t)

The last terms in equations C3 and C4 represent the static moments, because the co-

ordinates of the center of gravity of the undisturbed liquid are

m

2 sina (t +k +k 2)
fs =-_a - (i +k)

2 (1 - cos_) (1 + k+k 2)
T}S =_a (_ (1+ k)

The effective moment of inertia of liquid about y-axis is therefore

Iyeff:ma2f_2. _,)2. (1+k2)4 _.+sinacos_)
+

4(_1) m a b sin a
.m lIln

_ (l _i '2'
-- _m_n_

_ 2tanh (_/2)/ _m _2 I " 2- " 2 _i__2 _r_mn -kC• m
K 20_

(k _mn) 1 + No(}mn _

2 _2 }mn2 N 2 (}mn) tan h (_/2) }
(m 2 _ _ _2) K

(C6)
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and about the x_.axis

I m a 2{I + k 2 _ +xeff = 4 a

• 2 7rf- _2 _mn -kCm
20_

sin2 _ 4am bran [ (-1)
m

a- 11COS
J

a_ (i - k 2) _2
mn (C7)

(k _mn )] + No ( _mn_
2_2 _2mn(m2N_(_mn)_r2 _ _-) tank h (K/2)t

Since the moment of inertia of the rigid body

I = ma 2.
yo

I = ma 2
XO

+T i+

i (h)2 l+k2 _IT{ +T -

-sin oz cos

sin a cos

The ratio of the effective moment of the liquid to that of the rigid body can be

obtained easily from these results. For oscillations about the x-axis similar results

can be obtained•

For a container with circular cylindrical sector cross section corresponding

values for the effective moment of inertia can be obtained by substituting N and N 2 by
o

L and L 2. The roots _mn transform intoo mn

(k _mn ) ] has to be substituted by Jm (_mn)"

20_

(a = 1) the ratio of the moment of inertia is

and for the value [2/_ _mn - k C m

For a container of circular cross section

I
y eft
I
yo

GO

!+4 5
2 n=0

1- 4
h/a tan h cn

n T

2

which approaches, for h --_ 0 and h -_ oo, the value one.

(C8)
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l=_l

Table 1

CYLINDRICAL TANK WITH PING SECTOB CROSS-SECTION

i_t iGt Excitation About y-Axis

Excitation in y-Dircctton y It) = y0e Excitation in y-Direction y(t) = _)0e O(t) = O0e iGt and x-Axis X (t) = _e iflt

Fluid Force in Fluid Force in

x-Directlon Iy-Dlreetion

128

....... ('l)m+lcmbmn_2sin_ tanh K ._ F_ = ] )t
2a

- 2c_ _IL
b k_m_

= K I = = g 1

- k'J (kgnch) + Jm (_mn), 2 m
m_ + 2)I +I

_ )_ffio 2 _" 2c_ (K+2)_+I=__ )

2k_+l _, (-I)% {m

, ,.(,+ )O_ +',+ +
2u

(.l)_t m 2c<

' (2.

[ ' ' " >]<I. -7,I" (._+1) -7_ (I-'+_+l ]

Moment About

y-Axis

Moment About

x-Axis

:.:.;:!:...
.,...:::: ...

::i:i:}::::"

..:.:.:.:.:-:-:-:,:.:,:-:.
....... .-.-.?:.:....-.

F





Table 2

CIRCULAR CYLINDRICAL SECTOR TANK

i

130

Excitation in x- and y- Direction: x(t) £fzt 8(t) = _ l_t" Xoeif_t Excitation About y-Axis and x-Axis oeeifltx(t)
y(t) yo e o

i Iil i 1. lneo eifltVelocity Potenti_l _ . et_t COS ¢P_ ' _ _a a rzcos cp+ inn' cos(_) _.3[_F _= (r,cp .... ) = -IAmnCOSh(_) + BmnSinh(_)] co$_J_l

_.t_yo_ .tr sin _p (l.-q 2) c cosh _ -'_" i_X rzs£n<p

Fluid Force in

x-Direction

Fluid Force in

y-Direction

Moment About

y-Axis

Moment About

x-Axis

' <.i>.+i...Fx = + -_

Yo 0 _= (I-_ _) cm

(_ J(¢mn) + Lo(emn)
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TABLE 3. CYLINDRICAL CONTAINER WrrH CIRCULAR AND QUARTER CROSS SECTION

Cl_ular CylindricalTank Cylindrical(_tmrter Tank

Displacement of _ree
Fluid _rface

Fluid Force

Moment

Displacement ofFree
Fluid Surface

Fluid Force
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Cylindrical Quarter Tank
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Table 5

MECHANICAL MODEL

Circular Cylindrical Tank

i

i
i Mass Ratio of Sloshing

Mass to Liquid Mass

Ratio of Slosh Mass

Location to Fluid

Height

Distance of Fixed Mass

Below Center of Gravity

_f Liquid

Fixed Mass

mn
2 tanh (K)

a - 1)K, (en_ I

n = 1,2,3 ....

for

h. /I,h - _ tanb ( ) mass

system"

K ] forhn In I 4 (_)J "the oscfllatlon_--= _- + _ i -_ tanh
system"

for1__ mnhn
ho = mo "spring-mass

n=l system"

ho = m-_ mn(l n - hn) for "the oscillation
n=l system"

tanh K

m ° = m - m n = m I - 2 K(e_n. I - I)
n=l n=l

Container with Annular Cross Section
Container of Four Quarter Tanks

. V._ 2 - kC1(k[n I) ] tanh K
J

m (I - k 2) K

An- i

2__2.._.. kC1(E_n.1)
_n_l

2 22 S 2
4 (_ 1 " I) - Cl(k_n:l) (k_n.l-1)

2
_n-I

_---=}[i- -_ t::anh

V-'V- +_ 1-_'-tanh (_)

An-I -'kCx(k_,n_l) tanh'Km ° = m I - =2.___
(l-k 2) K

n=l
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Table 6

DAMPING FACTOR .7s FOR CONSTANT EXCITATION AMPLITUDE Xo = 2.5cm

Direct Method By Comparison with Magnification Curves and

from Phase Curves

zip F _ _ Z_P ZXP F F Form of Baffles
Phase Phase Phase

1.40 0.039 0.032 0.044 0.034 0.025 0.025 0.015 0.029 0.020

1.65 0.035 0.035 0.046 0.035 0.050 0.042 0.038

2.70 0.035 0.042 0.030 0.030

1.40 0.089 0.045 0.I00 0.066 0.050 0.052 0.040 0.068 0.130

1.65 0,147 0.170 0.125 0.075 0.130 0.073 0.150

2.70 0.150 0.105 0.095 0.250

1.40 0.130 0.170 0.120 D.180 0.050 0.150 0.120 0.i00 0.250

1.65 0.090 D.120 0.140 0.090 0.200

2.70 0.080 0.080

1.40 0.120 0.130 0.120 9.400

1.65 0.090 0.I00 0.140 3.300

2.70 0.140 0.I00

0.200 0.150 0.140 0.130

0.I00 0.170

0.080 0.140

1.40 0.120 0.120 0.080 0.130 0.II0 0.120 0.090 0.160

1.65 0.120 0.i00 0.140 0.150 0.160 0.200

2.70 0.090 0.080

®

w 0.2
_=

_w= 0.3
a

w
- = 0.15
a

,--i

0

m
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Circular Cylindrical Tank Container with Annular Cross Section Contsiner of Four Quarter Tanks

pring Constants k n = a) 2n-I mn

,ength of Pendulum
1 = ._fa_.. = a

n w2 tanh K
n-I _n-I

_mpingCoefficient ca = 2ran "n-1 7n

loment of Inertia

f Fixed Mass

Moment of Inet"cia of

Disc

for

I ° = Istar r- I d = moho 2 - mnhn e "sprlng-mass

n=l system"

-2I ° = Istar r - I d -moho _ mn(hn-ln )2

n=l

for "the oscillation system"

F 2 ]\? I - _ tanh (2)
£d

8ma _

. ¢2 2 - 1)n=l n-i (_n-I

An-'L"_n.----_ - kCl(k_n-1) 1-2 tanh(_)

Id = _ae I (l_k e) ce

n=l n-i

Id = ma e _ + 8
_s E 2

m=O n=O mn

_2

Id = lstar r - .I i + _e(Istarr )2

frum experimental results

)amping Coefficient
_2

d = c t + for fluid

_2[istarr,-_]2 suppression

2 (_)).{J2m (____mn2

I - _ tanh 2 _ (4m e- I)

2_n le (_mn) tanh K _]

K (4m 2 - 1)

+ , 1 (emn)// -o
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